Solving Hub Location Problems With Profits Using Variable Neighborhood Search

启发式 数学优化 解算器 水准点(测量) 可变邻域搜索 计算机科学 变量(数学) 本德分解 设施选址问题 分解法(排队论) 元启发式 数学 大地测量学 地理 离散数学 数学分析
作者
Chunxiao Zhang,Xiaoqian Sun,Weibin Dai,Sebastian Wandelt
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (1): 1675-1695 被引量:4
标识
DOI:10.1177/03611981221105501
摘要

This paper proposes variable neighborhood search (VNS) heuristics to solve hub network design problems with profits, which are uncapacitated hub location problems with incomplete hub networks. These problems seek to locate hub facilities, design hub networks, and assign spokes to hubs to maximize total profits. Six problems consisting of multiple allocation, single allocation, and r-allocation strategies, with optional direct connections, are solved. Unlike hub location problems that minimize costs satisfying all service demands, the operators can choose to satisfy a subset of travel demands to maximize profits. Although exact methods and heuristics are both commonly used for solving hub location problems, the problems with profits are mainly solved by the former. Therefore, VNS-based heuristics are proposed to solve six variants of hub location problems. The proposed heuristics have the same shaking procedure to escape local optima, while neighborhood structures in the improvement procedure depend on the allocation strategies. To evaluate the heuristics, this study also designs enhanced Benders decomposition methods which are exact algorithms. Computational experiments on existing benchmark datasets reveal an extraordinary performance of the heuristics. For the instances that can be solved by exact methods, the heuristics solve over 90% to optimality while being one to three orders of magnitude faster than the commercial solver CPLEX and Benders decomposition. Given the outstanding accuracy, with significantly reduced computational cost, the study contributes to the usage of heuristics for hub location problems with profits, especially for larger-scale networks, where exact methods cannot be executed because of limited computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助霍巧凡采纳,获得10
1秒前
2秒前
姚姚完成签到,获得积分20
2秒前
英姑应助迅速文龙采纳,获得10
2秒前
sonny发布了新的文献求助10
3秒前
3秒前
mozaiyan完成签到,获得积分20
3秒前
田様应助快乐的哒哒哒采纳,获得10
3秒前
svt发布了新的文献求助10
7秒前
夕陵发布了新的文献求助10
8秒前
热心的素发布了新的文献求助10
8秒前
CWNU_HAN应助Aeon采纳,获得30
9秒前
科研通AI2S应助xuyan采纳,获得10
9秒前
10秒前
10秒前
10秒前
orixero应助干净的夏天采纳,获得10
11秒前
11秒前
叶子发布了新的文献求助10
12秒前
zrq发布了新的文献求助10
12秒前
陶醉的又夏完成签到 ,获得积分10
12秒前
烟花应助正常采纳,获得10
12秒前
霍巧凡发布了新的文献求助10
14秒前
15秒前
chenboz发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
糖筱莜完成签到,获得积分10
20秒前
20秒前
21秒前
小至完成签到,获得积分10
21秒前
长孙曼香完成签到,获得积分10
23秒前
DAGH完成签到,获得积分20
23秒前
天天完成签到,获得积分10
23秒前
生动雁发布了新的文献求助10
25秒前
27秒前
SciGPT应助机灵的鸣凤采纳,获得10
27秒前
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464