Performance of CT radiomics in predicting the overall survival of patients with stage III clear cell renal carcinoma after radical nephrectomy

医学 肾切除术 肾细胞癌 阶段(地层学) 阿卡克信息准则 比例危险模型 无线电技术 肾透明细胞癌 T级 泌尿科 核医学 放射科 肿瘤科 内科学 总体生存率 统计 数学 古生物学 生物
作者
Dong Han,Nan Yu,Yong Yu,Taiping He,Xiaoyi Duan
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:127 (8): 837-847 被引量:35
标识
DOI:10.1007/s11547-022-01526-0
摘要

PurposeTo investigate the performance of CT radiomics in predicting the overall survival (OS) of patients with stage III clear cell renal carcinoma (ccRCC) after radical nephrectomy.Materials and methodsThe 132 patients with stage III ccRCC undergoing radical nephrectomy were collected, and the patients were divided into training set (n = 79) and validation set (n = 53). The ccRCC was segmented and 396 radiomics features were extracted. After dimensionality reduction, radiomics score (RS) was obtained. COX regression was used to construct Model 1 (clinical variables + CT findings) and Model 2 (clinical variables + CT findings + RS) in the training set to predict the OS of patients, and then, the performance of the two models in the two data sets was compared.ResultsIn the training set, Akaike information criterion, C-index, and corrected C-index were 295.51, 0.744, and 0.728 for Model 1, and 271.78, 0.805, and 0.799 for Model 2, respectively. In the validation set, the corresponding values were 185.68, 0.701, and 0.699 for Model 1, and 175.99, 0.768, and 0.768 for Model 2. The calibration curves showed that both models had good calibration degrees in the validation set. Compared with Model 1, the continuous net reclassification index and integrated discrimination improvement index of Model 2 in the two data sets were positively improved.ConclusionThe two prediction models showed high performance in the evaluation of OS of stage III ccRCC patients after radical nephrectomy, among which Model 2 based on ISUP grade and RS was more concise and efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swsx1317完成签到,获得积分10
1秒前
单纯航空关注了科研通微信公众号
2秒前
hhhhh发布了新的文献求助10
3秒前
活泼忆丹完成签到,获得积分10
4秒前
5秒前
7秒前
李健应助关山采纳,获得10
7秒前
sunyafei完成签到,获得积分10
7秒前
10秒前
上官若男应助离明采纳,获得10
10秒前
MJJ发布了新的文献求助10
11秒前
11秒前
SciGPT应助11采纳,获得10
11秒前
所所应助高木同学采纳,获得10
12秒前
勤奋的凌香完成签到,获得积分10
12秒前
12秒前
14秒前
wos发布了新的文献求助10
14秒前
万能图书馆应助关山采纳,获得10
15秒前
高贵黄蜂完成签到,获得积分10
15秒前
papa发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
16秒前
黄景瑜发布了新的文献求助10
16秒前
16秒前
meini完成签到 ,获得积分10
17秒前
Xx发布了新的文献求助30
17秒前
小萌新完成签到,获得积分10
17秒前
清爽老九发布了新的文献求助10
17秒前
17秒前
wanci应助秀丽若灵采纳,获得10
18秒前
科研通AI5应助Ting采纳,获得10
18秒前
直率媚颜发布了新的文献求助10
18秒前
2018夏之旅完成签到 ,获得积分10
19秒前
科研达人发布了新的文献求助10
20秒前
Ava应助老木虫采纳,获得10
20秒前
独特的向梦完成签到,获得积分10
20秒前
冷傲的冷霜完成签到,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770