Multimodal MRI Volumetric Data Fusion With Convolutional Neural Networks

卷积神经网络 模态(人机交互) 计算机科学 人工智能 模式 图像融合 特征(语言学) 医学影像学 分割 深度学习 图像分割 模式识别(心理学) 计算机视觉 源代码 特征提取 图像(数学) 操作系统 社会科学 语言学 哲学 社会学
作者
Yü Liu,Yu Shi,Fuhao Mu,Juan Cheng,Chang Li,Xun Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-15 被引量:24
标识
DOI:10.1109/tim.2022.3184360
摘要

Medical image fusion aims to integrate the complementary information captured by images of different modalities into a more informative composite image. However, current study on medical image fusion suffers from several drawbacks: 1) Existing methods are mostly designed for 2-D slice fusion, and they tend to lose spatial contextual information when fusing medical images with volumetric structure slice by slice individually. 2) The few existing 3-D medical image fusion methods fail in considering the characteristics of source modalities sufficiently, leading to the loss of important modality information. 3) Most existing works concentrate on pursuing good performance on visual perception and objective evaluation, while there is a severe lack of clinical problem-oriented study. In this paper, to address these issues, we propose a multimodal MRI volumetric data fusion method based on an end-to-end convolutional neural network (CNN). In our network, an attention-based multimodal feature fusion (MMFF) module is presented for more effective feature learning. In addition, a specific loss function that considers the characteristics of different MRI modalities is designed to preserve the modality information. Experimental results demonstrate that the proposed method can obtain more competitive results on both visual quality and objective assessment, when compared with some representative 3-D and 2-D medical image fusion methods. We further verify the significance of the proposed method for brain tumor segmentation by enriching the input modalities, and the results show that it is helpful to improve the segmentation accuracy. The source code of our fusion method is available at https://github.com/yuliu316316/3D-CNN-Fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助烟火会翻滚采纳,获得10
1秒前
2秒前
2秒前
蜂蜜兑多了完成签到,获得积分10
2秒前
2秒前
吾儿坤发布了新的文献求助80
3秒前
3秒前
5秒前
5秒前
无花果应助打工关采纳,获得10
6秒前
8秒前
仁谷居士发布了新的文献求助10
8秒前
荔枝发布了新的文献求助10
8秒前
夏风下完成签到,获得积分10
8秒前
9秒前
执着静竹完成签到,获得积分10
10秒前
10秒前
徐反宁完成签到,获得积分10
10秒前
10秒前
所所应助lyy采纳,获得10
12秒前
梅TiAmo发布了新的文献求助10
13秒前
李健应助仁谷居士采纳,获得10
13秒前
共享精神应助上帝开玩笑采纳,获得10
13秒前
赘婿应助甜甜谷丝采纳,获得10
14秒前
Hans发布了新的文献求助10
14秒前
15秒前
queer完成签到,获得积分10
15秒前
15秒前
酷酷的笔记本完成签到,获得积分10
16秒前
16秒前
NexusExplorer应助杨晓白采纳,获得10
18秒前
上官若男应助自然的凝冬采纳,获得10
19秒前
慕雪完成签到,获得积分0
19秒前
20秒前
开放念柏发布了新的文献求助10
20秒前
风巽雷震之歌完成签到,获得积分10
21秒前
李胖发布了新的文献求助10
21秒前
22秒前
Owen应助满意项链采纳,获得10
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514713
求助须知:如何正确求助?哪些是违规求助? 3097077
关于积分的说明 9233948
捐赠科研通 2792083
什么是DOI,文献DOI怎么找? 1532271
邀请新用户注册赠送积分活动 711879
科研通“疑难数据库(出版商)”最低求助积分说明 707045