Adaptive Knowledge Distillation for Lightweight Remote Sensing Object Detectors Optimizing

计算机科学 蒸馏 探测器 人工智能 目标检测 对象(语法) 机器学习 噪音(视频) 模式识别(心理学) 图像(数学) 电信 化学 有机化学
作者
Yiran Yang,Xian Sun,Wenhui Diao,Hao Li,Youming Wu,Xinming Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:56
标识
DOI:10.1109/tgrs.2022.3175213
摘要

Lightweight object detector is currently gaining more and more popularity in remote sensing. In general, it’s hard for lightweight detectors to achieve competitive performance compared to traditional deep models, while knowledge distillation is a promising training method to tackle the issue. Since the background is more complicated and the object size varies extremely in remote sensing images, it will deliver lots of noise and affect the training performance when directly applying the existing knowledge distillation methods. To tackle the above problems, we propose an Adaptive Reinforcement Supervision Distillation (ARSD) framework to promote the detection capability of the lightweight model. Firstly, we put forward a multiscale core features imitation (MCFI) module for transferring the knowledge of features, which can adaptively select the multiscale core features of objects for distillation and focus more on the features of small objects by an area-weighted strategy. In addition, a strict supervision regression distillation (SSRD) module is designed to select the optimal regression results for distillation, which facilitates the student to effectively imitate the more precise regression output of the teacher network. Massive experiments on the DOTA, DIOR, and NWPU VHR-10 datasets prove that ARSD outperforms the existing distillation SOTA methods. Moreover, the performance of lightweight model trained with our method transcends other classic heavy and lightweight detectors, which beneficiates the development of lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩嘉玺完成签到,获得积分10
刚刚
无情的rr发布了新的文献求助10
刚刚
沫哈完成签到,获得积分10
1秒前
wxyshare应助把握有度采纳,获得10
2秒前
3秒前
3秒前
王晗完成签到,获得积分20
4秒前
科研通AI6应助WN采纳,获得10
6秒前
Akim应助大气的砖家采纳,获得10
8秒前
Huaaaaaz发布了新的文献求助10
8秒前
xx发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
斯文败类应助米酒汤圆采纳,获得10
10秒前
秀丽小猫咪举报wsx求助涉嫌违规
11秒前
Jeff发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
13秒前
15秒前
Huaaaaaz完成签到,获得积分20
15秒前
ChatGPT发布了新的文献求助10
16秒前
奋斗不斜发布了新的文献求助10
17秒前
echo发布了新的文献求助10
18秒前
隐形曼青应助sol采纳,获得10
18秒前
Michelle发布了新的文献求助10
19秒前
19秒前
852应助无情的rr采纳,获得10
19秒前
19秒前
20秒前
20秒前
科研通AI6应助xx采纳,获得10
21秒前
21秒前
无道则愚完成签到 ,获得积分10
23秒前
gzl发布了新的文献求助10
24秒前
26秒前
猪米妮发布了新的文献求助10
26秒前
顺利的战斗机完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536778
求助须知:如何正确求助?哪些是违规求助? 4624429
关于积分的说明 14591955
捐赠科研通 4564906
什么是DOI,文献DOI怎么找? 2502008
邀请新用户注册赠送积分活动 1480808
关于科研通互助平台的介绍 1451989