Adaptive Knowledge Distillation for Lightweight Remote Sensing Object Detectors Optimizing

计算机科学 蒸馏 探测器 人工智能 目标检测 对象(语法) 机器学习 噪音(视频) 模式识别(心理学) 图像(数学) 电信 化学 有机化学
作者
Yiran Yang,Xian Sun,Wenhui Diao,Hao Li,Youming Wu,Xinming Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:47
标识
DOI:10.1109/tgrs.2022.3175213
摘要

Lightweight object detector is currently gaining more and more popularity in remote sensing. In general, it’s hard for lightweight detectors to achieve competitive performance compared to traditional deep models, while knowledge distillation is a promising training method to tackle the issue. Since the background is more complicated and the object size varies extremely in remote sensing images, it will deliver lots of noise and affect the training performance when directly applying the existing knowledge distillation methods. To tackle the above problems, we propose an Adaptive Reinforcement Supervision Distillation (ARSD) framework to promote the detection capability of the lightweight model. Firstly, we put forward a multiscale core features imitation (MCFI) module for transferring the knowledge of features, which can adaptively select the multiscale core features of objects for distillation and focus more on the features of small objects by an area-weighted strategy. In addition, a strict supervision regression distillation (SSRD) module is designed to select the optimal regression results for distillation, which facilitates the student to effectively imitate the more precise regression output of the teacher network. Massive experiments on the DOTA, DIOR, and NWPU VHR-10 datasets prove that ARSD outperforms the existing distillation SOTA methods. Moreover, the performance of lightweight model trained with our method transcends other classic heavy and lightweight detectors, which beneficiates the development of lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Josie完成签到 ,获得积分10
刚刚
可爱天川发布了新的文献求助10
刚刚
1秒前
GGBOND完成签到 ,获得积分10
1秒前
1秒前
日常没电完成签到,获得积分10
1秒前
1秒前
小悦悦完成签到 ,获得积分10
1秒前
顾矜应助yyk采纳,获得10
2秒前
小白完成签到,获得积分10
2秒前
Ava应助玩命的紫南采纳,获得10
2秒前
nbing完成签到,获得积分10
2秒前
忧郁南霜完成签到,获得积分10
3秒前
852应助Anna Jenna采纳,获得10
3秒前
elliot完成签到,获得积分10
3秒前
wanci应助WzJCW采纳,获得10
4秒前
4秒前
酷波er应助Helium采纳,获得10
5秒前
CipherSage应助CC努力搞科研采纳,获得10
5秒前
风会代我伴你完成签到,获得积分20
5秒前
小下完成签到 ,获得积分20
5秒前
gnr2000发布了新的文献求助10
7秒前
ifast完成签到 ,获得积分10
7秒前
哦了欧了完成签到,获得积分10
7秒前
Spinnin完成签到,获得积分10
8秒前
司空豁发布了新的文献求助10
8秒前
刁民发布了新的文献求助10
8秒前
8秒前
9秒前
海慕云发布了新的文献求助10
9秒前
烟花应助悦耳成危采纳,获得10
9秒前
朱道斌发布了新的文献求助10
10秒前
传奇3应助白华苍松采纳,获得10
10秒前
852应助元梦易采纳,获得10
10秒前
Unicorn完成签到,获得积分10
10秒前
背后白梦发布了新的文献求助10
11秒前
脑洞疼应助能干的听云采纳,获得10
11秒前
kksk发布了新的文献求助10
11秒前
腾龙剑影完成签到 ,获得积分10
11秒前
swy完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671