Adaptive Knowledge Distillation for Lightweight Remote Sensing Object Detectors Optimizing

计算机科学 蒸馏 探测器 人工智能 目标检测 对象(语法) 机器学习 噪音(视频) 模式识别(心理学) 图像(数学) 电信 有机化学 化学
作者
Yiran Yang,Xian Sun,Wenhui Diao,Hao Li,Youming Wu,Xinming Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:47
标识
DOI:10.1109/tgrs.2022.3175213
摘要

Lightweight object detector is currently gaining more and more popularity in remote sensing. In general, it’s hard for lightweight detectors to achieve competitive performance compared to traditional deep models, while knowledge distillation is a promising training method to tackle the issue. Since the background is more complicated and the object size varies extremely in remote sensing images, it will deliver lots of noise and affect the training performance when directly applying the existing knowledge distillation methods. To tackle the above problems, we propose an Adaptive Reinforcement Supervision Distillation (ARSD) framework to promote the detection capability of the lightweight model. Firstly, we put forward a multiscale core features imitation (MCFI) module for transferring the knowledge of features, which can adaptively select the multiscale core features of objects for distillation and focus more on the features of small objects by an area-weighted strategy. In addition, a strict supervision regression distillation (SSRD) module is designed to select the optimal regression results for distillation, which facilitates the student to effectively imitate the more precise regression output of the teacher network. Massive experiments on the DOTA, DIOR, and NWPU VHR-10 datasets prove that ARSD outperforms the existing distillation SOTA methods. Moreover, the performance of lightweight model trained with our method transcends other classic heavy and lightweight detectors, which beneficiates the development of lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wxs发布了新的文献求助10
2秒前
可爱的函函应助酷酷巧蟹采纳,获得10
3秒前
3秒前
blablawindy发布了新的文献求助10
4秒前
科研小白发布了新的文献求助10
5秒前
李爱国应助嘿咻采纳,获得10
5秒前
5秒前
5秒前
Steven发布了新的文献求助10
6秒前
6秒前
迟有朝完成签到,获得积分10
8秒前
崔佳慧发布了新的文献求助10
8秒前
粤十一完成签到,获得积分10
9秒前
10秒前
angelinazh完成签到,获得积分10
10秒前
粤十一发布了新的文献求助10
11秒前
11秒前
桐桐应助pura卷卷采纳,获得10
11秒前
12秒前
无花果应助端庄的如花采纳,获得10
13秒前
Hello应助咸鱼咸采纳,获得10
14秒前
张铁柱完成签到,获得积分10
14秒前
天天快乐应助崔佳慧采纳,获得10
14秒前
卢卢完成签到,获得积分10
16秒前
foreverchoi发布了新的文献求助10
16秒前
酷酷巧蟹发布了新的文献求助10
16秒前
16秒前
所所应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得30
17秒前
田様应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
Meyako应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
LYK2997499077关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206