亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Knowledge Distillation for Lightweight Remote Sensing Object Detectors Optimizing

计算机科学 蒸馏 探测器 人工智能 目标检测 对象(语法) 机器学习 噪音(视频) 模式识别(心理学) 图像(数学) 电信 化学 有机化学
作者
Yiran Yang,Xian Sun,Wenhui Diao,Hao Li,Youming Wu,Xinming Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:47
标识
DOI:10.1109/tgrs.2022.3175213
摘要

Lightweight object detector is currently gaining more and more popularity in remote sensing. In general, it’s hard for lightweight detectors to achieve competitive performance compared to traditional deep models, while knowledge distillation is a promising training method to tackle the issue. Since the background is more complicated and the object size varies extremely in remote sensing images, it will deliver lots of noise and affect the training performance when directly applying the existing knowledge distillation methods. To tackle the above problems, we propose an Adaptive Reinforcement Supervision Distillation (ARSD) framework to promote the detection capability of the lightweight model. Firstly, we put forward a multiscale core features imitation (MCFI) module for transferring the knowledge of features, which can adaptively select the multiscale core features of objects for distillation and focus more on the features of small objects by an area-weighted strategy. In addition, a strict supervision regression distillation (SSRD) module is designed to select the optimal regression results for distillation, which facilitates the student to effectively imitate the more precise regression output of the teacher network. Massive experiments on the DOTA, DIOR, and NWPU VHR-10 datasets prove that ARSD outperforms the existing distillation SOTA methods. Moreover, the performance of lightweight model trained with our method transcends other classic heavy and lightweight detectors, which beneficiates the development of lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gxh66完成签到,获得积分10
4秒前
青枫发布了新的文献求助30
5秒前
无花果应助Ni采纳,获得10
9秒前
11秒前
爆米花应助孔雪采纳,获得10
12秒前
14秒前
15秒前
脑洞疼应助cccccccc采纳,获得10
16秒前
16秒前
Ni发布了新的文献求助10
19秒前
qcq完成签到,获得积分10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
熊巴巴完成签到 ,获得积分10
21秒前
21秒前
21秒前
23秒前
Ni完成签到 ,获得积分20
26秒前
张绵羊发布了新的文献求助10
28秒前
脑洞疼应助感动的春天采纳,获得30
31秒前
32秒前
38秒前
Heng发布了新的文献求助10
42秒前
45秒前
青枫完成签到,获得积分10
53秒前
55秒前
eye发布了新的文献求助30
1分钟前
陈C完成签到 ,获得积分10
1分钟前
科研通AI2S应助嗯哼哈哈采纳,获得10
1分钟前
1分钟前
cccccccc发布了新的文献求助10
1分钟前
fafamimireredo完成签到,获得积分10
1分钟前
时尚的冰棍儿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
eye发布了新的文献求助10
1分钟前
gt完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188