Adaptive Knowledge Distillation for Lightweight Remote Sensing Object Detectors Optimizing

计算机科学 蒸馏 探测器 人工智能 目标检测 对象(语法) 机器学习 噪音(视频) 模式识别(心理学) 图像(数学) 电信 有机化学 化学
作者
Yiran Yang,Xian Sun,Wenhui Diao,Hao Li,Youming Wu,Xinming Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:47
标识
DOI:10.1109/tgrs.2022.3175213
摘要

Lightweight object detector is currently gaining more and more popularity in remote sensing. In general, it’s hard for lightweight detectors to achieve competitive performance compared to traditional deep models, while knowledge distillation is a promising training method to tackle the issue. Since the background is more complicated and the object size varies extremely in remote sensing images, it will deliver lots of noise and affect the training performance when directly applying the existing knowledge distillation methods. To tackle the above problems, we propose an Adaptive Reinforcement Supervision Distillation (ARSD) framework to promote the detection capability of the lightweight model. Firstly, we put forward a multiscale core features imitation (MCFI) module for transferring the knowledge of features, which can adaptively select the multiscale core features of objects for distillation and focus more on the features of small objects by an area-weighted strategy. In addition, a strict supervision regression distillation (SSRD) module is designed to select the optimal regression results for distillation, which facilitates the student to effectively imitate the more precise regression output of the teacher network. Massive experiments on the DOTA, DIOR, and NWPU VHR-10 datasets prove that ARSD outperforms the existing distillation SOTA methods. Moreover, the performance of lightweight model trained with our method transcends other classic heavy and lightweight detectors, which beneficiates the development of lightweight models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
laodie完成签到,获得积分10
1秒前
彭于晏应助ipeakkka采纳,获得10
1秒前
1秒前
敏感的芷发布了新的文献求助10
1秒前
susan发布了新的文献求助10
1秒前
2秒前
李爱国应助轻松的贞采纳,获得10
2秒前
wz完成签到,获得积分10
3秒前
子川完成签到 ,获得积分10
3秒前
怕孤独的鹭洋完成签到,获得积分10
3秒前
4秒前
耍酷的夏云完成签到,获得积分10
4秒前
laodie发布了新的文献求助10
5秒前
5秒前
小达完成签到,获得积分10
5秒前
nenoaowu发布了新的文献求助10
5秒前
文章要有性价比完成签到,获得积分10
6秒前
俏皮半烟完成签到,获得积分10
6秒前
Aki发布了新的文献求助10
6秒前
111完成签到,获得积分10
8秒前
耗尽完成签到,获得积分10
8秒前
烂漫驳发布了新的文献求助10
10秒前
轻松的贞完成签到,获得积分10
11秒前
李健应助balzacsun采纳,获得10
12秒前
轻松的悟空完成签到 ,获得积分10
14秒前
susan完成签到,获得积分10
15秒前
0029完成签到,获得积分10
17秒前
Aki完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
20秒前
LXR完成签到,获得积分10
22秒前
thchiang发布了新的文献求助10
23秒前
李健应助北城采纳,获得10
23秒前
WDK发布了新的文献求助10
23秒前
24秒前
轻松的贞发布了新的文献求助10
24秒前
医学生Mavis完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824