Comprehensive survey of computational ECG analysis: Databases, methods and applications

计算机科学 鉴定(生物学) 人工智能 生物识别 动态心电图 机器学习 数据挖掘 心电图 医学 植物 生物 心脏病学
作者
Elena Merdjanovska,Aleksandra Rashkovska
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:203: 117206-117206 被引量:37
标识
DOI:10.1016/j.eswa.2022.117206
摘要

Electrocardiogram (ECG) recordings are indicative for the state of the human heart. Automatic analysis of these recordings can be performed using various computational methods from the areas of signal processing and machine learning. In addition to the 12-lead ECG devices and the Holter monitor, as currently the most widely used ECG screening methods in clinical practice, ECG recordings are recently often acquired with small novel wireless ECG body sensors. These novel types of body sensors allow for ECG monitoring and analysis to be used for a much broader array of applications than only diagnosing cardiovascular disorders. The new types of ECG measuring devices, as well as their broader and more frequent use, pose new challenges in the processing and analysis of ECG, and furthermore, raise the need for automatic, low-cost, real-time, and efficient ECG monitoring that can be used at home or under ambulatory settings alike. This paper provides a comprehensive survey on the variety of both ECG data and computational methods in various applications: morphological and rhythmic arrhythmia detection, signal quality assessment, biometric identification, respiration estimation, fetal ECG extraction, and physical and emotional monitoring. It includes an extensive overview of 45 diverse ECG public databases and their analysis with state-of-the-art computational ECG methods. We highlight the most notable achievements in each of these ECG application areas in the recent years, and, furthermore, identify future trends in computational ECG analysis, especially analysis of ECG from mobile devices. The general conclusion is that ECG for medical diagnosis is successfully analyzed with the existing methods, while different applications during daily ECG monitoring are still open fields. Given how deep learning has been able to successfully address a lot of the most significant computational ECG problems, like arrhythmia classification, in future, it is expected for deep learning methods to be comprehensively tested in areas where they have not been yet applied, such as respiration estimation and fetal ECG extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助虚拟的绿蕊采纳,获得10
3秒前
4秒前
5秒前
7秒前
7秒前
丰知然应助薛顶饿采纳,获得10
8秒前
peanuttt完成签到,获得积分10
10秒前
刘金泽发布了新的文献求助10
10秒前
花儿发布了新的文献求助10
10秒前
zyh完成签到,获得积分10
12秒前
peanuttt发布了新的文献求助10
12秒前
脑洞疼应助雍雍采纳,获得10
13秒前
诺诺猪完成签到,获得积分10
16秒前
xixihaha完成签到,获得积分10
16秒前
YOOO完成签到,获得积分10
18秒前
典雅的俊驰应助shmily采纳,获得10
18秒前
领导范儿应助小夫采纳,获得10
19秒前
19秒前
SciGPT应助FSJ采纳,获得10
22秒前
优秀焦完成签到,获得积分10
22秒前
22秒前
所所应助粗犷的灵松采纳,获得30
22秒前
25秒前
蛋黄苏发布了新的文献求助10
25秒前
26秒前
27秒前
领导范儿应助SpursGo采纳,获得50
28秒前
31秒前
31秒前
碧蓝巧荷完成签到 ,获得积分10
32秒前
xiubo128发布了新的文献求助10
34秒前
李爱国应助fairy采纳,获得10
34秒前
赘婿应助满增明采纳,获得10
35秒前
35秒前
慕青应助塑料浇口采纳,获得10
35秒前
散木发布了新的文献求助30
36秒前
37秒前
37秒前
37秒前
洁净思萱完成签到,获得积分10
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301976
求助须知:如何正确求助?哪些是违规求助? 2936548
关于积分的说明 8477880
捐赠科研通 2610232
什么是DOI,文献DOI怎么找? 1425053
科研通“疑难数据库(出版商)”最低求助积分说明 662271
邀请新用户注册赠送积分活动 646456