作者
Iris Hui-Ru Jiang,Yao‐Wen Chang,Jiun-Lang Huang,Charlie Chung‐Ping Chen
摘要
As the design complexity grows dramatically in modern circuit designs, 2.5D/3D heterogeneous integration (HI) becomes effective for system performance, power, and cost optimization, providing promising solutions to the increasing cost of more-Moore scaling. In this talk, we investigate the chip, package, and board co-design methodology with advanced packages and optical communication considering essential issues on physical design, electrical, thermal, and mechanical effects, timing, and testing, and suggest future research opportunities. Layout: A robust and vertically integrated physical design flow for HI design is needed. We address chip-, package-, and board-level component planning, package-level RDL routing, board-level routing, optical routing, and placement and routing considering warpage and thermal effects. Timing: New chip-level and cross-chip timing analysis techniques are desired. We address timing propagation under current source delay model (CSM), timing analysis and optimization for optical-electrical routing, multi-corner multi-mode analysis for HI, hierarchical MCMM analysis. Testing: The scope covers functional-like test generation, System-in-Package (SiP) online testing, photonic integrated circuits (PIC) testing and design-for-test (DfT), etc. Integration: We shall address chip, package, and board co-design considering multi-domain physics, including physical, electrical, thermal, mechanical, and optical effects and optimization.