加氢脱氧
愈创木酚
催化作用
环己烯
化学
原位
选择性
水煤气变换反应
无机化学
有机化学
作者
А. В. Вутолкина,I. G. Baigildin,А. P. Glotov,А. А. Pimerzin,A. V. Akopyan,A. L. Maximov,Э. А. Караханов
标识
DOI:10.1016/j.apcatb.2022.121403
摘要
We report efficient hydrodeoxygenation of guaiacol via in situ hydrogen generated through Water Gas Shift (WGS) reaction over nanosized unsupported NiMoS catalysts with tunable selectivity toward cyclohexene. This strategy possesses a direct reaction route of oxygen-containing compounds from bio-oils depending on catalysts precursors and reaction conditions. The active catalytic species were formed in situ through the high-temperature decomposition of oil-soluble metal precursors followed by sulfidation in water-in-oil sulfur-containing emulsions. Unsupported NiMoS catalysts were found to provide 100% guaiacol conversion at 320–380 ℃ and 5 MPa CO pressure. Reaction routes and mechanisms for hydrodeoxygenation of guaiacol were proposed. Ni:Mo= 1:3 and sulfur content of 1.2–1.5 wt% favor higher cyclohexene selectivity decreases at low temperature and short reaction time (30–40 wt% water content, CO pressure of 5 MPa). The catalysts were found to be reusable at least 6 cycles in the sulfur-assisted hydrodeoxygenation of guaiacol with maintaining conversion, and active component evolution was studied.
科研通智能强力驱动
Strongly Powered by AbleSci AI