Predicting outcomes for locally advanced rectal cancer treated with neoadjuvant chemoradiation with CT-based radiomics

医学 无线电技术 结直肠癌 比例危险模型 阶段(地层学) Lasso(编程语言) T级 内科学 总体生存率 肿瘤科 生存分析 核医学 放射科 癌症 古生物学 生物 万维网 计算机科学
作者
Fuqiang Wang,Boon Fei Tan,Sharon Shuxian Poh,T.R. Siow,Faye Lynette Wei Tching Lim,Connie Siew Poh Yip,Michael Lian Chek Wang,Wen Long Nei,Hong Qi Tan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:13
标识
DOI:10.1038/s41598-022-10175-2
摘要

Abstract A feasibility study was performed to determine if CT-based radiomics could play an augmentative role in predicting neoadjuvant rectal score (NAR), locoregional failure free survival (LRFFS), distant metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) in locally advanced rectal cancer (LARC). The NAR score, which takes into account the pathological tumour and nodal stage as well as clinical tumour stage, is a validated surrogate endpoint used for early determination of treatment response whereby a low NAR score (< 8) has been correlated with better outcomes and high NAR score (> 16) has been correlated with poorer outcomes. CT images of 191 patients with LARC were used in this study. Primary tumour (GTV) and mesorectum (CTV) were contoured separately and radiomics features were extracted from both segments. Two NAR models (NAR > 16 and NAR < 8) models were constructed using Least Absolute Shrinkage and Selection Operator (LASSO) and the survival models were constructed using regularized Cox regressions. Area under curve (AUC) and time-dependent AUC were used to quantify the performance of the LASSO and Cox regression respectively, using ten folds cross validations. The NAR > 16 and NAR < 8 models have an average AUCs of 0.68 ± 0.13 and 0.59 ± 0.14 respectively. There are statistically significant differences between the clinical and combined model for LRFFS (from 0.68 ± 0.04 to 0.72 ± 0.04), DMFS (from 0.68 ± 0.05 to 0.70 ± 0.05) and OS (from 0.64 ± 0.06 to 0.66 ± 0.06). CTV radiomics features were also found to be more important than GTV features in the NAR prediction model. The most important clinical features are age and CEA for NAR > 16 and NAR < 8 models respectively, while the most significant clinical features are age, surgical margin and NAR score across all the four survival models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9yu完成签到,获得积分10
刚刚
无聊的路人完成签到,获得积分10
刚刚
1秒前
Jasper应助郭娅楠采纳,获得10
2秒前
wjx发布了新的文献求助10
2秒前
海光完成签到,获得积分10
2秒前
Obliviate发布了新的文献求助10
3秒前
Wendy完成签到,获得积分10
3秒前
碳土不凡完成签到 ,获得积分10
4秒前
4秒前
4秒前
白宝宝北北白应助yy采纳,获得40
5秒前
5秒前
科研通AI5应助四福祥采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
恩恩发布了新的文献求助10
8秒前
李健应助努力的欢欢采纳,获得10
9秒前
科研通AI5应助siri采纳,获得10
9秒前
moci123完成签到 ,获得积分10
9秒前
10秒前
10秒前
无花果应助yihoxu采纳,获得10
10秒前
宋佳顺发布了新的文献求助10
10秒前
10秒前
罗瑞发布了新的文献求助10
11秒前
11秒前
火星上的小松鼠完成签到,获得积分10
12秒前
研友_ZbKgl8发布了新的文献求助10
12秒前
wumengxin发布了新的文献求助10
13秒前
13秒前
14秒前
郭娅楠发布了新的文献求助10
15秒前
星空完成签到,获得积分10
15秒前
lalalala发布了新的文献求助10
16秒前
17秒前
17秒前
大模型应助聪明小黄采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541140
求助须知:如何正确求助?哪些是违规求助? 3118337
关于积分的说明 9335088
捐赠科研通 2816187
什么是DOI,文献DOI怎么找? 1548260
邀请新用户注册赠送积分活动 721436
科研通“疑难数据库(出版商)”最低求助积分说明 712680