Predicting outcomes for locally advanced rectal cancer treated with neoadjuvant chemoradiation with CT-based radiomics

医学 无线电技术 结直肠癌 比例危险模型 阶段(地层学) Lasso(编程语言) T级 内科学 总体生存率 肿瘤科 生存分析 核医学 放射科 癌症 万维网 古生物学 生物 计算机科学
作者
Fuqiang Wang,Boon Fei Tan,Sharon Shuxian Poh,T.R. Siow,Faye Lynette Wei Tching Lim,Connie Siew Poh Yip,Michael Lian Chek Wang,Wen Long Nei,Hong Qi Tan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1) 被引量:13
标识
DOI:10.1038/s41598-022-10175-2
摘要

Abstract A feasibility study was performed to determine if CT-based radiomics could play an augmentative role in predicting neoadjuvant rectal score (NAR), locoregional failure free survival (LRFFS), distant metastasis free survival (DMFS), disease free survival (DFS) and overall survival (OS) in locally advanced rectal cancer (LARC). The NAR score, which takes into account the pathological tumour and nodal stage as well as clinical tumour stage, is a validated surrogate endpoint used for early determination of treatment response whereby a low NAR score (< 8) has been correlated with better outcomes and high NAR score (> 16) has been correlated with poorer outcomes. CT images of 191 patients with LARC were used in this study. Primary tumour (GTV) and mesorectum (CTV) were contoured separately and radiomics features were extracted from both segments. Two NAR models (NAR > 16 and NAR < 8) models were constructed using Least Absolute Shrinkage and Selection Operator (LASSO) and the survival models were constructed using regularized Cox regressions. Area under curve (AUC) and time-dependent AUC were used to quantify the performance of the LASSO and Cox regression respectively, using ten folds cross validations. The NAR > 16 and NAR < 8 models have an average AUCs of 0.68 ± 0.13 and 0.59 ± 0.14 respectively. There are statistically significant differences between the clinical and combined model for LRFFS (from 0.68 ± 0.04 to 0.72 ± 0.04), DMFS (from 0.68 ± 0.05 to 0.70 ± 0.05) and OS (from 0.64 ± 0.06 to 0.66 ± 0.06). CTV radiomics features were also found to be more important than GTV features in the NAR prediction model. The most important clinical features are age and CEA for NAR > 16 and NAR < 8 models respectively, while the most significant clinical features are age, surgical margin and NAR score across all the four survival models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yixia222发布了新的文献求助10
1秒前
阔叶材完成签到,获得积分10
1秒前
充电宝应助西扬采纳,获得10
2秒前
Xide完成签到,获得积分10
2秒前
科目三应助wulififi采纳,获得10
3秒前
雨后完成签到,获得积分10
4秒前
香云发布了新的文献求助10
6秒前
zero完成签到 ,获得积分10
6秒前
luofeiyu发布了新的文献求助10
7秒前
积极台灯完成签到 ,获得积分10
7秒前
laosu发布了新的文献求助10
9秒前
9秒前
染墨发布了新的文献求助10
9秒前
9秒前
小陈呀完成签到 ,获得积分10
10秒前
10秒前
ggyy应助keyan采纳,获得10
10秒前
11秒前
万能图书馆应助WRC采纳,获得10
11秒前
12秒前
打打应助xd采纳,获得10
12秒前
WHW完成签到,获得积分10
12秒前
FFFFF应助满意的世界采纳,获得10
12秒前
布丁发布了新的文献求助10
13秒前
HHN完成签到 ,获得积分10
13秒前
zcg完成签到,获得积分10
14秒前
15秒前
nostalgic发布了新的文献求助10
16秒前
诱导效应发布了新的文献求助10
16秒前
求助人员发布了新的文献求助10
16秒前
陈陈发布了新的文献求助10
17秒前
科研通AI6应助西因采纳,获得10
17秒前
上官若男应助西因采纳,获得10
17秒前
17秒前
17秒前
我是老大应助yy采纳,获得30
18秒前
20秒前
EpQAQ完成签到,获得积分10
20秒前
张雨欣完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241