Deep-learning-based porous media microstructure quantitative characterization and reconstruction method

表征(材料科学) 随机性 计算机科学 微观结构 可控性 多孔介质 材料科学 多孔性 人工智能 纳米技术 数学 复合材料 应用数学 统计
作者
Yubo Huang,Zhong Xiang,Miao Qian
出处
期刊:Physical review [American Physical Society]
卷期号:105 (1) 被引量:24
标识
DOI:10.1103/physreve.105.015308
摘要

Microstructure characterization and reconstruction (MCR) is one of the most important components of discovering processing-structure-property relations of porous media behavior and inverse porous media design in computational materials science. Since the algorithms for describing and controlling the geometric configuration of microstructures need to solve a large number of variables and involve multiobjective conditions, the existing MCR methods have difficulty in gaining a perfect trade-off among the quantitative generation and characterization capability and the reconstruction quality. In this work, an improved 3D Porous Media Microstructure (3DPmmGAN) generative adversarial network based on deep-learning algorithm is demonstrated for high-quality microstructures generation with high controllability and high prediction accuracy. The proposed 3DPmmGAN allows the model to utilize unlabeled data for complex high-randomness microstructures end-to-end training within an acceptable time consumption. Further analysis shows that the trained network has good adaptivity for microstructures with different random geometric configurations, and can quantitatively control the generated structure according to semantic conditions, and can also quantitatively predict complex microstructure features. The key results suggest the proposed 3DPmmGAN is a powerful tool to accelerate the preparation and the initial characterization of 3D porous media, and potentially maximize the design efficiency for porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
负责小甜瓜完成签到,获得积分10
刚刚
刚刚
Cyan完成签到,获得积分10
刚刚
刚刚
烟花应助Wang采纳,获得10
刚刚
cherlie应助元气糖采纳,获得10
1秒前
1秒前
明亮的绫发布了新的文献求助10
1秒前
Jaime完成签到,获得积分20
2秒前
2秒前
joni发布了新的文献求助10
3秒前
cs发布了新的文献求助10
3秒前
hexinxin完成签到,获得积分10
3秒前
4秒前
玲℃完成签到,获得积分10
4秒前
熊大发布了新的文献求助10
4秒前
LUCA发布了新的文献求助10
5秒前
搞怪莫茗发布了新的文献求助10
5秒前
6秒前
6秒前
彭于晏应助weerfi采纳,获得10
6秒前
隐形曼青应助正在进行时采纳,获得10
7秒前
海东来应助高大的天道采纳,获得50
7秒前
开放飞阳完成签到,获得积分10
7秒前
科研通AI2S应助帅气凝云采纳,获得10
7秒前
Deny完成签到,获得积分10
7秒前
orixero应助Elliot_315采纳,获得10
7秒前
8秒前
8秒前
sugar完成签到,获得积分10
8秒前
JamesPei应助张灬小胖采纳,获得10
9秒前
王小小完成签到,获得积分10
9秒前
Cheung2121完成签到,获得积分20
9秒前
10秒前
10秒前
kelly完成签到,获得积分10
10秒前
共享精神应助JM采纳,获得10
10秒前
坦率的匪举报111求助涉嫌违规
11秒前
长情的千风完成签到,获得积分10
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650