已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Optimal MEC-Based Collision Avoidance System for Cooperative Inland Vessels: A Federated Deep Learning Approach

避碰 计算机科学 云计算 背景(考古学) 碰撞 服务(商务) 物联网 计算机安全 分布式计算 实时计算 计算机网络 古生物学 经济 经济 生物 操作系统
作者
Wided Hammedi,Bouziane Brik,Sidi‐Mohammed Senouci
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:17
标识
DOI:10.1109/tits.2022.3154158
摘要

Cooperative collision avoidance between inland waterway ships is among the envisioned services on the Internet of Ships. Such a service aims to support safe navigation while optimizing ships' trajectories. However, to deploy it, timely and accurate prediction of ships' positioning with real-time reactions is needed to anticipate collisions. In such a context, ships positions are usually predicted using advanced Machine Learning (ML) techniques. Traditionally, ML schemes require that the data be processed in a centralized way, e.g., a cloud data center managed by a third party. However, these schemes are not suitable for the collisions avoidance service due to the inaccessibility of ships' positioning data by this third party, and allowing connected ships to get access to sensitive information. Therefore, in this paper, we design a new cooperative collision avoidance system for inland ships, while ensuring data security and privacy. Our system is based on deep federated learning to collaboratively build a model of ship positioning prediction, while avoiding sharing their private data. In addition, it is deployed at multi-access edge computing (MEC) level to provide low-latency communication to ensure fast responses during collision detection. Furthermore, it relies on Blockchain and smart contracts to ensure trust and valid communications between ships and MEC nodes. We evaluate the proposed system using a generated dataset representing ships mobility in France. The results, which demonstrate the accuracy of our prediction model, prove the effectiveness of our cooperative collision avoidance system in ensuring timely and reliable communications and avoiding collisions between ships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AnnaTian完成签到,获得积分10
4秒前
和平使命应助龙之灵采纳,获得10
5秒前
虚幻豌豆发布了新的文献求助10
8秒前
SciGPT应助AnnaTian采纳,获得10
9秒前
8R60d8应助zqy采纳,获得10
10秒前
芝士奶盖有点咸完成签到 ,获得积分10
17秒前
18秒前
18秒前
熊泰山完成签到 ,获得积分10
19秒前
Persist完成签到 ,获得积分10
19秒前
TMEDA发布了新的文献求助10
22秒前
下午好完成签到 ,获得积分10
23秒前
嗯哼举报xibei求助涉嫌违规
30秒前
小张完成签到 ,获得积分10
31秒前
joanna完成签到,获得积分10
34秒前
zqy完成签到,获得积分10
35秒前
TMEDA完成签到,获得积分20
35秒前
WUWUWU应助今天爱自己了吗采纳,获得50
37秒前
38秒前
无心的行云完成签到,获得积分10
38秒前
40秒前
科研佟完成签到 ,获得积分10
42秒前
42秒前
rofsc完成签到 ,获得积分10
43秒前
李志全完成签到 ,获得积分10
45秒前
乔Q完成签到 ,获得积分10
45秒前
坦率尔蝶完成签到 ,获得积分10
50秒前
cmq完成签到 ,获得积分10
55秒前
56秒前
脆脆鲨发布了新的文献求助20
1分钟前
yangjoy完成签到 ,获得积分10
1分钟前
晓雨完成签到 ,获得积分10
1分钟前
mao完成签到,获得积分10
1分钟前
年轻冰萍关注了科研通微信公众号
1分钟前
花朝初三完成签到,获得积分10
1分钟前
木语完成签到 ,获得积分10
1分钟前
Orange应助水电费黑科技采纳,获得10
1分钟前
聪明的灵寒完成签到 ,获得积分10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
lulu完成签到,获得积分10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307263
求助须知:如何正确求助?哪些是违规求助? 2940973
关于积分的说明 8499843
捐赠科研通 2615205
什么是DOI,文献DOI怎么找? 1428763
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382