吸附
化学工程
纤维素
阳离子聚合
傅里叶变换红外光谱
层状结构
肿胀 的
动力学
化学
弗伦德利希方程
亚甲蓝
材料科学
动能
共价键
高分子化学
核化学
有机化学
复合材料
催化作用
物理
量子力学
光催化
工程类
出处
期刊:Cellulose
[Springer Science+Business Media]
日期:2022-04-21
卷期号:29 (8): 4539-4564
被引量:6
标识
DOI:10.1007/s10570-022-04564-z
摘要
In this paper, a new green pH-sensitive EDTA crosslinked HEC (cellulose-based hydrogel (swelling rate ~ 1005%)) adsorbent was successfully elaborated. The synthesis of HEC-EDTA at the high advanced crosslinking degree (up to 92%), was carried out using DAEDT and DMAP as acyl transfer agent, where the lamellar morphology (2D-microstructure) was highly suggested based on the average functionality of the reaction system. The crosslinking degree was confirmed using structural analyzes (FTIR and 13C CP/MAS-NMR) and elemental profile analysis. The new EDTA crosslinked HEC demonstrated a high uptake capacity (~ 2000 mg g−1) to aquatic micropollutants, especially methylene blue as cationic dyes model. The kinetic study showed that the adsorption process was well described by the pseudo-second-order kinetic, while the thermodynamic parameters exhibited a negative effect of temperature indicating a physical adsorption process. In addition, the adsorption capacity was studied varying to the experimental conditions (pH, contact time, concentration, etc.), and the Freundlich model revealed a strong correlation to the experimental data indicating an energetic heterogeneity of the surface active sites. Furthermore, using COMPASS II, the molecular dynamics (MD) simulations were conducted to optimize the chemical system, where the results showed the predominance of non-covalent molecular adsorbent-adsorbate interactions, which governs cluster design and configurations.
科研通智能强力驱动
Strongly Powered by AbleSci AI