Potential of a Second-Generation Dual-Layer Spectral CT for Dose Calculation in Particle Therapy Treatment Planning

质子疗法 粒子疗法 阻止力 放射治疗计划 有效原子序数 粒子(生态学) 质子 计算物理学 材料科学 核医学 离子 物理 原子序数 光学 医学 梁(结构) 原子物理学 放射科 核物理学 放射治疗 海洋学 量子力学 地质学
作者
Friderike K. Longarino,Antonia Kowalewski,Thomas Tessonnier,Stewart Mein,Benjamin Ackermann,Jürgen Debus,Andrea Mairani,Wolfram Stiller
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:5
标识
DOI:10.3389/fonc.2022.853495
摘要

In particle therapy treatment planning, dose calculation is conducted using patient-specific maps of tissue ion stopping power ratio (SPR) to predict beam ranges. Improving patient-specific SPR prediction is therefore essential for accurate dose calculation. In this study, we investigated the use of the Spectral CT 7500, a second-generation dual-layer spectral computed tomography (DLCT) system, as an alternative to conventional single-energy CT (SECT) for patient-specific SPR prediction. This dual-energy CT (DECT)-based method allows for the direct prediction of SPR from quantitative measurements of relative electron density and effective atomic number using the Bethe equation, whereas the conventional SECT-based method consists of indirect image data-based prediction through the conversion of calibrated CT numbers to SPR. The performance of the Spectral CT 7500 in particle therapy treatment planning was characterized by conducting a thorough analysis of its SPR prediction accuracy for both tissue-equivalent materials and common non-tissue implant materials. In both instances, DLCT was found to reduce uncertainty in SPR predictions compared to SECT. Mean deviations of 0.7% and 1.6% from measured SPR values were found for DLCT- and SECT-based predictions, respectively, in tissue-equivalent materials. Furthermore, end-to-end analyses of DLCT-based treatment planning were performed for proton, helium, and carbon ion therapies with anthropomorphic head and pelvic phantoms. 3D gamma analysis was performed with ionization chamber array measurements as the reference. DLCT-predicted dose distributions revealed higher passing rates compared to SECT-predicted dose distributions. In the DLCT-based treatment plans, measured distal-edge evaluation layers were within 1 mm of their predicted positions, demonstrating the accuracy of DLCT-based particle range prediction. This study demonstrated that the use of the Spectral CT 7500 in particle therapy treatment planning may lead to better agreement between planned and delivered dose compared to current clinical SECT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zeal完成签到,获得积分10
刚刚
zwenng完成签到,获得积分10
1秒前
琴香孙琴香完成签到,获得积分10
1秒前
bi完成签到 ,获得积分10
1秒前
1秒前
sunny完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
lalala应助淡淡翠曼采纳,获得10
3秒前
俊秀的千万完成签到,获得积分10
4秒前
4秒前
不是一个名字完成签到,获得积分10
4秒前
允许一切发生完成签到 ,获得积分10
4秒前
芳芳完成签到,获得积分10
4秒前
4秒前
wmm20035完成签到,获得积分10
4秒前
Young完成签到 ,获得积分10
5秒前
友好立诚发布了新的文献求助10
6秒前
hsr_eye发布了新的文献求助10
7秒前
MrFANG完成签到,获得积分10
7秒前
jygjhgy完成签到,获得积分10
8秒前
铱凡完成签到,获得积分10
8秒前
单于青荷完成签到,获得积分10
8秒前
lzy完成签到,获得积分10
9秒前
美丽易云完成签到,获得积分10
9秒前
板栗完成签到,获得积分10
10秒前
沉默的孤风完成签到,获得积分10
10秒前
风趣的芝麻完成签到 ,获得积分10
10秒前
爆米花应助坚定的羽毛采纳,获得10
10秒前
一期一会完成签到,获得积分10
10秒前
young发布了新的文献求助200
11秒前
11秒前
11秒前
111完成签到 ,获得积分10
11秒前
柠檬普洱茶完成签到,获得积分10
11秒前
11秒前
lzl17o8完成签到,获得积分20
12秒前
advance完成签到,获得积分0
13秒前
浮生若梦完成签到 ,获得积分10
13秒前
喵喵完成签到 ,获得积分10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5438995
求助须知:如何正确求助?哪些是违规求助? 4550108
关于积分的说明 14222052
捐赠科研通 4471048
什么是DOI,文献DOI怎么找? 2450149
邀请新用户注册赠送积分活动 1441103
关于科研通互助平台的介绍 1417681