Aggressive ability improvement of self-resonating cavitating jets with double-hole nozzle

喷嘴 腐蚀 喷射(流体) 空化 机械 物理 航程(航空) 流量(数学) 材料科学 地质学 复合材料 热力学 古生物学
作者
Boshen Liu,Yang Gao,Fei Ma
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:214: 110476-110476 被引量:6
标识
DOI:10.1016/j.petrol.2022.110476
摘要

The aggressive ability of cavitating jets generated by a double-hole nozzle was investigated under an ambient pressure condition to improve the erosion efficiency for potential applications such as underground drilling. The erosion damage was experimentally investigated for a series of pitch–hole ratios to understand the erosion mechanism of the double-hole cavitating jets. The flow characteristics of various erosion patterns were numerically investigated using two-phase computational fluid dynamics (CFD) calculations. The stages of erosion suppression in the pitch–hole ratio range wp ∈ [1.25, 3] and erosion enhancement in wp ∈ [3.5, 6] were observed based on the mass loss Δm across the entire range of standoff distance ratio ls. Two erosion patterns were identified according to the erosion features, designated as A and B, with increasing standoff distance ratio ls. Erosion occurs in multiple scattered regions in pattern A and which appears as two symmetric D-shaped regions in pattern B. In contrast to the single-hole jet, the aggressive ability was significantly improved a wp = 4.5 with higher Δm peaks. Double-hole cavitating jets at the optimum pitch–hole ratio achieve the highest streamwise velocity and the weakest interaction between the two jets. The cavitation clouds in the impinging jets generated by the optimum pitch–hole nozzle primarily collapse in the D-shaped main erosion region, which enhances the erosion damage of the double-hole cavitating jets at the optimum standoff distance ratios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助paul采纳,获得10
1秒前
3秒前
英姑应助书生采纳,获得10
4秒前
科研钓鱼佬完成签到,获得积分10
5秒前
7秒前
petrichor应助C_Cppp采纳,获得10
7秒前
nan完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
勤恳的雨文完成签到,获得积分10
8秒前
木森ab发布了新的文献求助10
9秒前
paul完成签到,获得积分10
9秒前
小鞋完成签到,获得积分10
10秒前
开心青旋发布了新的文献求助10
10秒前
fztnh发布了新的文献求助10
10秒前
无名花生完成签到 ,获得积分10
10秒前
12秒前
13秒前
13秒前
杜若完成签到,获得积分10
13秒前
13秒前
木森ab完成签到,获得积分20
15秒前
paul发布了新的文献求助10
16秒前
17秒前
MEME发布了新的文献求助10
20秒前
20秒前
情怀应助LSH970829采纳,获得10
20秒前
CHINA_C13发布了新的文献求助10
23秒前
Mars发布了新的文献求助10
24秒前
哈哈哈完成签到,获得积分10
24秒前
玛卡巴卡应助平常的毛豆采纳,获得100
25秒前
默默的青旋完成签到,获得积分10
26秒前
29秒前
搜集达人应助淡淡采白采纳,获得10
29秒前
高高代珊完成签到 ,获得积分10
30秒前
gmc发布了新的文献求助10
31秒前
31秒前
32秒前
善学以致用应助Mian采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824