SpO2 Measurement: Non-Idealities and Ways to Improve Estimation Accuracy in Wearable Pulse Oximeters

光容积图 脉搏血氧仪 计算机科学 人工智能 可穿戴计算机 信号(编程语言) 计算机视觉 滤波器(信号处理) 嵌入式系统 医学 麻醉 程序设计语言
作者
Deepak Berwal,Ajay Kuruba,Aatha Mohin Shaikh,Anand Udupa,Maryam Shojaei Baghini
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (12): 11653-11664 被引量:18
标识
DOI:10.1109/jsen.2022.3170069
摘要

The blood oxygen saturation level (SpO 2 ) has become one of the vital body parameters for the early detection, monitoring, and tracking of the symptoms of coronavirus diseases 2019 (COVID-19) and is clinically accepted for patient care and diagnostics. Pulse oximetry provides non-invasive SpO 2 monitoring at home and ICUs without the need of a physician/doctor. However, the accuracy of SpO 2 estimation in wearable pulse oximeters remains a challenge due to various non-idealities. We propose a method to improve the estimation accuracy by denoising the red and IR signals, detecting the signal quality, and providing feedback to hardware to adjust the signal chain parameters like LED current or transimpedance amplifier gain and enhance the signal quality. SpO 2 is calculated using the red and infrared photoplethysmogram (PPG) signals acquired from the wrist using Texas Instruments AFE4950EVM. We introduce the green PPG signal as a reference to obtain the window size of the moving average filter for baseline wander removal and as a timing reference for peak and valley detection in the red and infrared PPG signals. We propose the improved peak and valley detection algorithm based on the incremental merge segmentation algorithm. Kurtosis, entropy, and Signal-to-noise ratio (SNR) are used as signal quality parameters, and SNR is further related to the variance in the SpO 2 measurement. A closed-loop implementation is performed to enhance signal quality based on the signal quality parameters of the recorded PPG signals. The proposed algorithm aims to estimate SpO 2 with a variance of 1% for the pulse oximetry devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
天外来客完成签到,获得积分10
3秒前
晨曦发布了新的文献求助20
5秒前
典雅的惊蛰完成签到,获得积分10
5秒前
共享精神应助tingting采纳,获得10
6秒前
小蘑菇应助鸿鲤采纳,获得10
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
百腻权完成签到,获得积分10
9秒前
10秒前
美满元灵完成签到,获得积分10
10秒前
思源应助江河采纳,获得10
11秒前
阳阳完成签到,获得积分10
11秒前
温水煮青蛙完成签到 ,获得积分0
11秒前
12秒前
12秒前
正直凌文完成签到 ,获得积分10
13秒前
13秒前
13秒前
13秒前
valiant完成签到 ,获得积分10
13秒前
modesty发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
笑卧云端发布了新的文献求助10
14秒前
科研小哥发布了新的文献求助10
14秒前
15秒前
若云完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
顾矜应助猩心采纳,获得10
17秒前
18秒前
chenxinrong完成签到,获得积分10
18秒前
guhuihaozi完成签到,获得积分20
18秒前
haru完成签到,获得积分10
18秒前
美满元灵发布了新的文献求助10
18秒前
18秒前
tingting发布了新的文献求助10
19秒前
hlj1234321发布了新的文献求助10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101