Model‐based clustering of high‐dimensional longitudinal data via regularization

贝叶斯信息准则 聚类分析 混合模型 选型 期望最大化算法 随机效应模型 正规化(语言学) 数学 样本量测定 高斯分布 统计 计算机科学 人工智能 最大似然 医学 荟萃分析 物理 量子力学 内科学
作者
Luoying Yang,Tong Tong Wu
出处
期刊:Biometrics [Wiley]
卷期号:79 (2): 761-774 被引量:4
标识
DOI:10.1111/biom.13672
摘要

We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
妩媚的海应助科研通管家采纳,获得10
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
黑猫乾杯应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
wxyshare应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
稀罕你完成签到,获得积分10
2秒前
无花果应助科研通管家采纳,获得100
2秒前
Akim应助科研通管家采纳,获得10
2秒前
星月应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
含糊的丹发布了新的文献求助10
3秒前
大个应助CChi0923采纳,获得10
3秒前
聪慧若风发布了新的文献求助10
4秒前
XX发布了新的文献求助10
4秒前
4秒前
单薄艳发布了新的文献求助10
4秒前
zhou完成签到,获得积分10
5秒前
隐形曼青应助俊逸半烟采纳,获得10
5秒前
科研通AI6应助滟滟采纳,获得10
5秒前
科研通AI6应助ww采纳,获得10
5秒前
岳拔萃完成签到 ,获得积分10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901