Estimation of area and volume change in the glaciers of the Columbia Icefield, Canada using machine learning algorithms and Landsat images

冰原 冰川 地质学 遥感 自然地理学 算法 地图学
作者
Shrinidhi Ambinakudige,Adjoa Intsiful
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:: 100732-100732
标识
DOI:10.1016/j.rsase.2022.100732
摘要

Machine learning image classification algorithms offer a potential for effective and efficient classification of remotely sensed images covering glaciated areas. The Columbia Icefield in Canada is one such place where glaciers are retreating and losing mass over the years. The Columbia Icefield plays an important role in the region's water budget. In this study, the accuracy of three machine learning algorithms, namely, SVM, RF and MLC, were assessed for the classification of snow/ice area on 2020 Landsat 8 OLI image. All three algorithms classified the image with over 99 percent accuracies, but the SVM classifier showed a higher accuracy in debris covered areas on glaciers. Further, we used SVM algorithm to classify Landsat 5 TM - Sept 10, 1985, Landsat 5 TM - Sept 27, 1991, Landsat 8 OLI - Aug 22, 2013, and Landsat 8 OLI - Sept 10, 2020 images in the Columbia Icefield. Among nine glaciers, Saskatchewan (- 4.57 km 2 ), Dome (−2.03 km 2 ), Columbia (−2.06 km 2 ), Stutfield (−2.17 km 2 ), G242655E52112N (−1.39 km 2 ), Athabasca (−1.39 km 2 ), Castleguard (−1.3 km 2 ), and G242614E52109N (−0.54 km 2 ) measured less ice and snow-covered areas between 1985 and 2020. For these nine glaciers, there was a total decrease of 2.01 ± 0.24 km 3 volume between 1985 and 2020, which is about 1.81 ± 0.22 km 3 water equivalent or 0.12 ± 0.015 km 3 water equivalent per year. On average, Saskatchewan (−0.699 km 3 ) and Columbia (−0.307 km 3 ) Glaciers lost the highest volume of snow and ice between 1985 and 2020. This study also concluded that all SVM, RF and MLC produce highly accurate satellite image classification in the glaciated areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
腼腆的冷玉完成签到,获得积分10
1秒前
Lucas应助123采纳,获得10
2秒前
111完成签到,获得积分10
2秒前
个性的紫菜应助Double桐采纳,获得20
2秒前
希望天下0贩的0应助yi采纳,获得10
2秒前
物外完成签到,获得积分10
3秒前
东京蔡徐坤完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
king_creole完成签到,获得积分10
5秒前
VV完成签到,获得积分10
5秒前
5秒前
6秒前
面包小狗发布了新的文献求助10
6秒前
必发SCI完成签到,获得积分10
6秒前
zct完成签到,获得积分20
6秒前
7秒前
LILIN发布了新的文献求助10
7秒前
安静翎关注了科研通微信公众号
7秒前
BioNiuma完成签到,获得积分10
8秒前
秧秧完成签到,获得积分10
9秒前
9秒前
semigreen发布了新的文献求助10
9秒前
科研通AI6应助Gaberil采纳,获得10
9秒前
9秒前
kkk发布了新的文献求助10
11秒前
雪茶完成签到,获得积分10
11秒前
11秒前
11秒前
执着银耳汤完成签到,获得积分10
11秒前
zct发布了新的文献求助10
11秒前
11秒前
文静的柚子完成签到,获得积分10
11秒前
眼睛大的文龙完成签到 ,获得积分10
11秒前
chen完成签到,获得积分10
11秒前
11秒前
可爱敏敏完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437