Estimation of area and volume change in the glaciers of the Columbia Icefield, Canada using machine learning algorithms and Landsat images

冰原 冰川 地质学 遥感 自然地理学 算法 地图学
作者
Shrinidhi Ambinakudige,Adjoa Intsiful
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier]
卷期号:: 100732-100732
标识
DOI:10.1016/j.rsase.2022.100732
摘要

Machine learning image classification algorithms offer a potential for effective and efficient classification of remotely sensed images covering glaciated areas. The Columbia Icefield in Canada is one such place where glaciers are retreating and losing mass over the years. The Columbia Icefield plays an important role in the region's water budget. In this study, the accuracy of three machine learning algorithms, namely, SVM, RF and MLC, were assessed for the classification of snow/ice area on 2020 Landsat 8 OLI image. All three algorithms classified the image with over 99 percent accuracies, but the SVM classifier showed a higher accuracy in debris covered areas on glaciers. Further, we used SVM algorithm to classify Landsat 5 TM - Sept 10, 1985, Landsat 5 TM - Sept 27, 1991, Landsat 8 OLI - Aug 22, 2013, and Landsat 8 OLI - Sept 10, 2020 images in the Columbia Icefield. Among nine glaciers, Saskatchewan (- 4.57 km 2 ), Dome (−2.03 km 2 ), Columbia (−2.06 km 2 ), Stutfield (−2.17 km 2 ), G242655E52112N (−1.39 km 2 ), Athabasca (−1.39 km 2 ), Castleguard (−1.3 km 2 ), and G242614E52109N (−0.54 km 2 ) measured less ice and snow-covered areas between 1985 and 2020. For these nine glaciers, there was a total decrease of 2.01 ± 0.24 km 3 volume between 1985 and 2020, which is about 1.81 ± 0.22 km 3 water equivalent or 0.12 ± 0.015 km 3 water equivalent per year. On average, Saskatchewan (−0.699 km 3 ) and Columbia (−0.307 km 3 ) Glaciers lost the highest volume of snow and ice between 1985 and 2020. This study also concluded that all SVM, RF and MLC produce highly accurate satellite image classification in the glaciated areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
fffff完成签到,获得积分10
3秒前
Orange应助伶俐的高烽采纳,获得10
3秒前
研友_V8QPVZ完成签到,获得积分10
3秒前
司马千风发布了新的文献求助10
3秒前
Singularity应助阳阳采纳,获得10
4秒前
sxt完成签到,获得积分10
4秒前
5秒前
可樂发布了新的文献求助10
5秒前
张航发布了新的文献求助30
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
cc应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
tramp应助科研通管家采纳,获得10
6秒前
6秒前
Owen应助科研通管家采纳,获得10
6秒前
毛豆应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
毛豆应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Singularity应助科研通管家采纳,获得10
7秒前
7秒前
一一应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
7秒前
小蛋糕卖男孩完成签到,获得积分10
7秒前
优雅小橘子完成签到 ,获得积分10
8秒前
伊酒应助柠檬茶156采纳,获得10
8秒前
谢耳朵发布了新的文献求助10
9秒前
天天快乐应助lan采纳,获得10
10秒前
张航完成签到,获得积分10
11秒前
zhongzihao应助踏实的酸奶采纳,获得10
11秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462411
求助须知:如何正确求助?哪些是违规求助? 3055964
关于积分的说明 9050078
捐赠科研通 2745534
什么是DOI,文献DOI怎么找? 1506438
科研通“疑难数据库(出版商)”最低求助积分说明 696110
邀请新用户注册赠送积分活动 695633