Estimation of area and volume change in the glaciers of the Columbia Icefield, Canada using machine learning algorithms and Landsat images

冰原 冰川 地质学 遥感 自然地理学 算法 地图学
作者
Shrinidhi Ambinakudige,Adjoa Intsiful
出处
期刊:Remote Sensing Applications: Society and Environment [Elsevier BV]
卷期号:: 100732-100732
标识
DOI:10.1016/j.rsase.2022.100732
摘要

Machine learning image classification algorithms offer a potential for effective and efficient classification of remotely sensed images covering glaciated areas. The Columbia Icefield in Canada is one such place where glaciers are retreating and losing mass over the years. The Columbia Icefield plays an important role in the region's water budget. In this study, the accuracy of three machine learning algorithms, namely, SVM, RF and MLC, were assessed for the classification of snow/ice area on 2020 Landsat 8 OLI image. All three algorithms classified the image with over 99 percent accuracies, but the SVM classifier showed a higher accuracy in debris covered areas on glaciers. Further, we used SVM algorithm to classify Landsat 5 TM - Sept 10, 1985, Landsat 5 TM - Sept 27, 1991, Landsat 8 OLI - Aug 22, 2013, and Landsat 8 OLI - Sept 10, 2020 images in the Columbia Icefield. Among nine glaciers, Saskatchewan (- 4.57 km 2 ), Dome (−2.03 km 2 ), Columbia (−2.06 km 2 ), Stutfield (−2.17 km 2 ), G242655E52112N (−1.39 km 2 ), Athabasca (−1.39 km 2 ), Castleguard (−1.3 km 2 ), and G242614E52109N (−0.54 km 2 ) measured less ice and snow-covered areas between 1985 and 2020. For these nine glaciers, there was a total decrease of 2.01 ± 0.24 km 3 volume between 1985 and 2020, which is about 1.81 ± 0.22 km 3 water equivalent or 0.12 ± 0.015 km 3 water equivalent per year. On average, Saskatchewan (−0.699 km 3 ) and Columbia (−0.307 km 3 ) Glaciers lost the highest volume of snow and ice between 1985 and 2020. This study also concluded that all SVM, RF and MLC produce highly accurate satellite image classification in the glaciated areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霉头脑完成签到 ,获得积分10
刚刚
ceeray23发布了新的文献求助20
2秒前
shouz应助热情盼柳采纳,获得10
3秒前
3秒前
3秒前
4秒前
风语村发布了新的文献求助10
5秒前
斯文败类应助Yy123采纳,获得10
6秒前
bt完成签到,获得积分10
6秒前
Merryonwine发布了新的文献求助10
7秒前
Owen应助认真的潇洒采纳,获得10
8秒前
风中问晴完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
嘻嘻哈哈应助liudun23采纳,获得10
13秒前
whysoserious发布了新的文献求助10
13秒前
谦逊的饼完成签到,获得积分10
13秒前
科目三应助大梦要努力采纳,获得10
15秒前
哦萨尔发布了新的文献求助10
15秒前
踏实半烟完成签到,获得积分10
15秒前
生动不平发布了新的文献求助10
16秒前
和老爹豆豆完成签到,获得积分20
17秒前
77完成签到 ,获得积分10
17秒前
粗犷的尔阳完成签到,获得积分10
19秒前
wenliu完成签到,获得积分10
19秒前
随便吧发布了新的文献求助10
21秒前
153266916完成签到 ,获得积分10
22秒前
22秒前
orixero应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
24秒前
情怀应助科研通管家采纳,获得10
24秒前
long应助科研通管家采纳,获得10
24秒前
Owen应助科研通管家采纳,获得10
24秒前
大模型应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
烟花应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252465
求助须知:如何正确求助?哪些是违规求助? 4416187
关于积分的说明 13748934
捐赠科研通 4288199
什么是DOI,文献DOI怎么找? 2352788
邀请新用户注册赠送积分活动 1349608
关于科研通互助平台的介绍 1309131