Tuning of the structural, morphological, optoelectronic and interfacial properties of electrodeposited Cu2O towards solar water-splitting by varying the deposition pH

沉积(地质) 材料科学 分解水 光电子学 太阳能电池 化学工程 纳米技术 化学 地质学 光催化 催化作用 古生物学 沉积物 生物化学 工程类
作者
Iqra Reyaz Hamdani,Ashok N. Bhaskarwar
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
卷期号:240: 111719-111719 被引量:7
标识
DOI:10.1016/j.solmat.2022.111719
摘要

In the present work investigations on the morphological, structural, optoelectronic, and photoelectrochemical properties of Cu 2 O were carried out in detail at various deposition pH values. It was observed that Cu 2 O maintained the polycrystalline nature and exhibited (111) plane dominance irrespective of the deposition pH. Using the Debye-Scherrer equation and the Williamson-Hall method, the crystallite size and intrinsic lattice strain were observed to decrease with increase in the deposition pH. The crystal shapes were noticed to transform from three-sided pyramids to three-faced prisms and eventually to four-faced pyramids with the increase in bath pH from 5 to 10. Films deposited at lower pH were thicker and showed higher light absorption, and the bandgaps were tunable from 2.03 eV to 2.19 eV. The type of electronic conductivity was tuned from n-type to p-type at the pH of 7, and the flatband potential showed variation from −0.16 V to 0.27 V as the deposition pH was increased. The cathodic photocurrent-density increased as the deposition pH increased from pH 7 to 8 and then decreased after the pH of 8 due to a possible competition between the charge-recombination and charge-migration. • Bath pH has a significant influence on the film thickness of electrodeposited Cu 2 O. • Crystal sizes and lattice strains decrease with increase in the deposition pH. • A red-shift in the light absorption takes place towards the thicker Cu 2 O films. • Bandgaps and the flatband potentials decrease with the decrease in the bath pH. • The overall photocatalytic properties of Cu 2 O can be optimized by varying bath pH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助起司嗯采纳,获得10
刚刚
remimazolam发布了新的文献求助10
1秒前
在水一方应助悦耳寒松采纳,获得10
1秒前
满座完成签到,获得积分10
1秒前
科研通AI2S应助coffee采纳,获得10
1秒前
2秒前
雪山飞龙发布了新的文献求助30
2秒前
科研通AI5应助phd采纳,获得10
3秒前
善学以致用应助京阿尼采纳,获得10
3秒前
Sylvia完成签到,获得积分10
3秒前
朴素的鸡发布了新的文献求助10
3秒前
SCI发布了新的文献求助10
3秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
4秒前
Enoch完成签到,获得积分10
4秒前
Sara完成签到,获得积分10
4秒前
4秒前
zhuzhu发布了新的文献求助20
4秒前
YUZU发布了新的文献求助10
5秒前
5秒前
6秒前
shirleeyeahe完成签到,获得积分10
7秒前
7秒前
特特雷珀萨努完成签到 ,获得积分10
7秒前
京阿尼完成签到,获得积分10
7秒前
风雨发布了新的文献求助10
7秒前
orixero应助今非采纳,获得10
7秒前
平常的G完成签到,获得积分10
8秒前
8秒前
小石头完成签到,获得积分10
9秒前
9秒前
YL完成签到 ,获得积分10
9秒前
9秒前
上官若男应助整齐路灯采纳,获得10
9秒前
yyj发布了新的文献求助10
9秒前
细腻的麦片完成签到,获得积分20
10秒前
10秒前
君君完成签到,获得积分10
11秒前
cchen0902完成签到,获得积分10
11秒前
Sara发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794