光催化
量子产额
氧气
材料科学
兴奋剂
化学工程
析氧
过氧化氢
可见光谱
制氢
光化学
催化作用
镍
化学
电极
电化学
光电子学
荧光
有机化学
物理化学
光学
冶金
物理
工程类
作者
Ruifeng Du,Ke Xiao,Baoying Li,Xu Han,Chaoqi Zhang,Xiang Wang,Yong Zuo,Pablo Guardia,Junshan Li,Jianbin Chen,Jordi Arbiol,Andreu Cabot
标识
DOI:10.1016/j.cej.2022.135999
摘要
Hydrogen peroxide (H2O2) is both a key component in several industrial processes and a promising liquid fuel. The production of H2O2 by solar photocatalysis is a suitable strategy to convert and store solar energy into chemical energy. Here we report an oxygen-doped tubular g-C3N4 with uniformly dispersed nickel nanoparticles for efficient photocatalytic H2O2 generation. The hollow structure of the tubular g-C3N4 provides a large surface with a high density of reactive sites and efficient visible light absorption during the photocatalytic reaction. The oxygen doping and Ni loading enable a fast separation of photogenerated charge carriers and a high selectivity toward the two-electron process during the oxygen reduction reaction (ORR). The optimized composition, Ni4%/O0.2tCN, displays an H2O2 production rate of 2464 μmol g−1·h−1, which is eightfold higher than that of bulk g-C3N4 under visible light irradiation (λ > 420 nm), and achieves an apparent quantum yield (AQY) of 28.2% at 380 nm and 14.9% at 420 nm.
科研通智能强力驱动
Strongly Powered by AbleSci AI