Electrically tunable magnetism and unique intralayer charge transfer in Janus monolayer MnSSe for spintronics applications

自旋电子学 凝聚态物理 磁性 材料科学 铁磁性 磁化 纳米技术 磁场 物理 量子力学
作者
Yu Chen,Qiang Fan,Yiding Liu,Gang Yao
出处
期刊:Physical review [American Physical Society]
卷期号:105 (19) 被引量:36
标识
DOI:10.1103/physrevb.105.195410
摘要

Controlling magnetism and electronic properties of two-dimensional (2D) materials by purely electrical means is crucial and highly sought for high-efficiency spintronics devices since electric field can be easily applied locally compared with magnetic field. The recently discover 2D Janus crystals has provide a new platform for nanoscale electronics and spintronics due to their broken inversion symmetry nature. The intrinsic ferromagnetic Jauns monolayer, and hence the tunable physical properties, is therefore of great interest. Here, through comprehensive density functional theory calculations and Monte Carlo simulations, we unveil that single-layer MnSSe is an intrinsic ferromagnetic half-metal with a direct band gap of 1.14 eV in spin-down channel and a Curie temperature of about 72 K. The exchange coupling can be significantly enhanced or quenched by hole and electron doping, respectively. In particular, a small amount of hole doping MnSSe can tune its magnetization easy axis in between out-of-plane and in-plane directions, which is conducive to designing 2D spin field-effect transistor for spin-dependent transport. We also find a reversible longitudinal interlayer charge transfer between S and Se layers for the first time that is highly sensitive to the applied external electric field. Interestingly, the directions of charge flow and the applied field are the same. The behavior originates from the coexistence and/or the competition of external and built-in fields. These findings, together with the excellent stability and large in-plane stiffness, can greatly facilitate the development of nanoscale electronics and spintronics devices based on 2D MnSSe crystal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观艳完成签到,获得积分10
1秒前
1秒前
1秒前
JZ完成签到,获得积分10
2秒前
Shoshana完成签到,获得积分10
3秒前
3秒前
甜北枳完成签到,获得积分10
4秒前
承乐发布了新的文献求助10
4秒前
珊珊发布了新的文献求助10
4秒前
简单幸福完成签到 ,获得积分0
4秒前
6秒前
无花果应助adamwang采纳,获得10
6秒前
6秒前
HCT发布了新的文献求助10
6秒前
8秒前
Kondo发布了新的文献求助10
9秒前
小鱼完成签到 ,获得积分10
10秒前
一一应助有意义采纳,获得10
10秒前
10秒前
橘猫完成签到 ,获得积分10
10秒前
10秒前
10秒前
11秒前
求求你帮帮我完成签到,获得积分10
11秒前
共享精神应助珊珊采纳,获得10
11秒前
共享精神应助禹宛白采纳,获得10
11秒前
11秒前
12秒前
长情的小鸽子完成签到,获得积分10
12秒前
157295108发布了新的文献求助10
13秒前
烟花应助zxcvvbnm采纳,获得10
13秒前
13秒前
阔达如松发布了新的文献求助10
13秒前
WNL发布了新的文献求助10
13秒前
坚强水杯发布了新的文献求助60
14秒前
16秒前
善学以致用应助oue采纳,获得10
16秒前
16秒前
16秒前
HCT完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802