概率测度
数学
索波列夫空间
肯定性
公制(单位)
欧几里得空间
计算
度量空间
有界函数
概率分布
度量(数据仓库)
核(代数)
离散数学
组合数学
正定矩阵
计算机科学
算法
纯数学
数学分析
统计
特征向量
运营管理
量子力学
数据库
经济
物理
作者
Tam Le,Truyen Nguyen,Dinh Phung,Viet Anh Nguyen
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2202.10723
摘要
Optimal transport (OT) is a popular measure to compare probability distributions. However, OT suffers a few drawbacks such as (i) a high complexity for computation, (ii) indefiniteness which limits its applicability to kernel machines. In this work, we consider probability measures supported on a graph metric space and propose a novel Sobolev transport metric. We show that the Sobolev transport metric yields a closed-form formula for fast computation and it is negative definite. We show that the space of probability measures endowed with this transport distance is isometric to a bounded convex set in a Euclidean space with a weighted $\ell_p$ distance. We further exploit the negative definiteness of the Sobolev transport to design positive-definite kernels, and evaluate their performances against other baselines in document classification with word embeddings and in topological data analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI