Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion

计算机科学 语音识别 情绪识别 支持向量机 感知器 人工智能 自然语言处理 帧(网络) 多层感知器 人工神经网络 电信
作者
Bagus Tris Atmaja,Akira Sasou,Masato Akagi
出处
期刊:Speech Communication [Elsevier]
卷期号:140: 11-28 被引量:16
标识
DOI:10.1016/j.specom.2022.03.002
摘要

Speech emotion recognition (SER) is traditionally performed using merely acoustic information. Acoustic features, commonly are extracted per frame, are mapped into emotion labels using classifiers such as support vector machines for machine learning or multi-layer perceptron for deep learning. Previous research has shown that acoustic-only SER suffers from many issues, mostly on low performances. On the other hand, not only acoustic information can be extracted from speech but also linguistic information. The linguistic features can be extracted from the transcribed text by an automatic speech recognition system. The fusion of acoustic and linguistic information could improve the SER performance. This paper presents a survey of the works on bimodal emotion recognition fusing acoustic and linguistic information. Five components of bimodal SER are reviewed: emotion models, datasets, features, classifiers, and fusion methods. Some major findings, including state-of-the-art results and their methods from the commonly used datasets, are also presented to give insights for the current research and to surpass these results. Finally, this survey proposes the remaining issues in the bimodal SER research for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋泥卷的芋泥完成签到,获得积分10
1秒前
Orange应助panfan采纳,获得10
2秒前
Gavin啥也不会完成签到,获得积分10
2秒前
我是老大应助高大冬萱采纳,获得10
4秒前
4秒前
5秒前
lwh完成签到,获得积分20
5秒前
6秒前
6秒前
JamesPei应助麋鹿采纳,获得10
6秒前
wxd完成签到,获得积分10
8秒前
一步之遥完成签到,获得积分10
8秒前
香蕉觅云应助方董采纳,获得10
10秒前
小二郎应助lwh采纳,获得10
10秒前
cc发布了新的文献求助30
12秒前
12秒前
12秒前
13秒前
坤坤蹦蹦跳跳完成签到,获得积分10
15秒前
我是老大应助科研通管家采纳,获得30
15秒前
852应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
我自随风发布了新的文献求助10
17秒前
17秒前
Owen应助别皱眉采纳,获得10
18秒前
18秒前
自行输入昵称完成签到 ,获得积分10
18秒前
20秒前
方董发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161332
求助须知:如何正确求助?哪些是违规求助? 2812743
关于积分的说明 7896558
捐赠科研通 2471616
什么是DOI,文献DOI怎么找? 1316066
科研通“疑难数据库(出版商)”最低求助积分说明 631106
版权声明 602112