Cascaded learning in intravascular ultrasound: coronary stent delineation in manual pullbacks

医学 支架 血管内超声 分割 经皮冠状动脉介入治疗 放射科 人工智能 背景(考古学) 计算机科学 心肌梗塞 内科学 生物 古生物学
作者
Tobias Wissel,Katharina A. Riedl,Klaus Schaefers,Hannes Nickisch,Fabian J. Brunner,Nikolas D. Schnellbaecher,Stefan Blankenberg,Moritz Seiffert,Michael Grass
出处
期刊:Journal of medical imaging [SPIE - International Society for Optical Engineering]
卷期号:9 (02)
标识
DOI:10.1117/1.jmi.9.2.025001
摘要

Purpose: Implanting stents to re-open stenotic lesions during percutaneous coronary interventions is considered a standard treatment for acute or chronic coronary syndrome. Intravascular ultrasound (IVUS) can be used to guide and assess the technical success of these interventions. Automatically segmenting stent struts in IVUS sequences improves workflow efficiency but is non-trivial due to a challenging image appearance entailing manifold ambiguities with other structures. Manual, ungated IVUS pullbacks constitute a challenge in this context. We propose a fully data-driven strategy to first longitudinally detect and subsequently segment stent struts in IVUS frames. Approach: A cascaded deep learning approach is presented. It first trains an encoder model to classify frames as "stent," "no stent," or "no use." A segmentation model then delineates stent struts on a pixel level only in frames with a stent label. The first stage of the cascade acts as a gateway to reduce the risk for false positives in the second stage, the segmentation, which is trained on a smaller and difficult-to-annotate dataset. Training of the classification and segmentation model was based on 49,888 and 1826 frames of 74 sequences from 35 patients, respectively. Results: The longitudinal classification yielded Dice scores of 92.96%, 82.35%, and 94.03% for the classes stent, no stent, and no use, respectively. The segmentation achieved a Dice score of 65.1% on the stent ground truth (intra-observer performance: 75.5%) and 43.5% on all frames (including frames without stent, with guidewires, calcium, or without clinical use). The latter improved to 49.5% when gating the frames by the classification decision and further increased to 57.4% with a heuristic on the plausible stent strut area. Conclusions: A data-driven strategy for segmenting stents in ungated, manual pullbacks was presented-the most common and practical scenario in the time-critical clinical workflow. We demonstrated a mitigated risk for ambiguities and false positive predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助cc采纳,获得10
2秒前
aa完成签到,获得积分10
2秒前
苏钰完成签到,获得积分10
2秒前
6秒前
薰硝壤应助科研通管家采纳,获得10
7秒前
7秒前
今后应助科研通管家采纳,获得10
7秒前
领导范儿应助辛勤紫雪采纳,获得10
9秒前
失眠的香蕉完成签到 ,获得积分10
11秒前
小赞完成签到,获得积分10
12秒前
周二完成签到 ,获得积分10
16秒前
自信的网络完成签到 ,获得积分10
19秒前
fransiccarey完成签到,获得积分10
21秒前
一一一完成签到,获得积分10
25秒前
甜甜秋荷完成签到,获得积分10
28秒前
开放素完成签到 ,获得积分10
29秒前
指哪打哪完成签到,获得积分10
29秒前
糖加三勺完成签到 ,获得积分10
29秒前
mo完成签到 ,获得积分10
35秒前
风信子完成签到,获得积分10
41秒前
42秒前
坦率妖丽完成签到,获得积分10
43秒前
辛勤紫雪发布了新的文献求助10
48秒前
49秒前
十七完成签到 ,获得积分10
50秒前
宁士萧完成签到 ,获得积分10
52秒前
55秒前
尔信完成签到 ,获得积分10
56秒前
Xxxxxxx完成签到 ,获得积分10
59秒前
Lyn完成签到 ,获得积分10
1分钟前
燕子完成签到,获得积分10
1分钟前
lby完成签到 ,获得积分10
1分钟前
心已死何来心完成签到,获得积分10
1分钟前
今后应助辛勤紫雪采纳,获得10
1分钟前
完美世界应助mm_zxh采纳,获得10
1分钟前
bzdqsm完成签到,获得积分10
1分钟前
雨兔儿完成签到,获得积分10
1分钟前
春眠不觉小小酥完成签到,获得积分10
1分钟前
不羡江中仙完成签到 ,获得积分10
1分钟前
尊敬的半梅完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056640
求助须知:如何正确求助?哪些是违规求助? 2713111
关于积分的说明 7434713
捐赠科研通 2358205
什么是DOI,文献DOI怎么找? 1249317
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596250