Concurrently enhanced mechanical properties and capacitive performance in all-organic dielectric polymer blend via phase separation

材料科学 复合材料 甲基丙烯酸酯 电介质 聚合物 聚合物混合物 介电强度 相(物质) 化学工程 高分子化学 共聚物 有机化学 化学 光电子学 工程类
作者
Ting Zhou,Le Zhou,Yixuan Liu,Jingtong Lu,Shan He,Wei Li,Geng Li,Fang‐Zhou Yao,Yang Shen,Ke Wang
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:131 (12) 被引量:9
标识
DOI:10.1063/5.0084679
摘要

Phase separation of polymer blends has attracted much interest in designing high-performance materials with specific mechanical and dielectric properties. To this end, three types of poly(methacrylic ester)s, including poly(methyl methacrylate) (PMMA), poly(butyl methacrylate) (PBMA), and poly(isobutyl methacrylate) [P(iBMA)], have been incorporated in the poly(vinylidene fluoride-co-hexafluoropropylene) [P(VDF-HFP)] matrix, respectively. As exemplified in P(VDF-HFP)/P(iBMA) blended films, a conspicuous phase separation is experimentally observed and the blended film presents an enhanced Young's modulus and a one-fold increment in the elongation over the pristine P(VDF-HFP). The excellent plasticity is benefited from the interfacial regions between the two phases, which could effectively pin the cracks and retard the slippage under deformation. Simultaneously, an ultra-high Weibull breakdown strength (∼774 MV/m) is obtained in the blends, benefiting from the improved Young's modulus and excellent plasticity. The blends are endowed with an excellent energy storage density (∼21 J/cm3 at 830 MV/m), along with an impressive cycling stability. In contrary, P(VDF-HFP)/PMMA and P(VDF-HFP)/PBMA blended films sacrifice the plasticity due to the scarcity of phase separation; therefore, even though Young's moduli have been improved, there is no remarkable improvement for breakdown strengths and energy storage performances. The experimental results are augmented by molecular dynamics simulations. This contribution provides a facile approach to develop high-performance polymer dielectric materials through a phase separation design and emphasize the importance of plasticity for breakdown strength.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
良辰应助烟台光明使者采纳,获得10
1秒前
1秒前
深情安青应助xtq采纳,获得10
1秒前
科研通AI2S应助独特乘云采纳,获得10
3秒前
章鱼哥完成签到,获得积分10
3秒前
4秒前
4秒前
HY发布了新的文献求助10
5秒前
肥喵发布了新的文献求助10
5秒前
jianhaohuang完成签到,获得积分10
6秒前
7秒前
Gigi发布了新的文献求助10
7秒前
orixero应助满意沅采纳,获得10
11秒前
金金金发布了新的文献求助10
13秒前
夜无疆完成签到,获得积分10
13秒前
ttt完成签到,获得积分10
14秒前
15秒前
寻雪完成签到,获得积分10
15秒前
执着完成签到,获得积分10
15秒前
冷月芳华发布了新的文献求助10
16秒前
wheat完成签到,获得积分10
16秒前
思源应助顾暖采纳,获得10
16秒前
潇洒的如蓉完成签到 ,获得积分10
17秒前
18秒前
风蓝发布了新的文献求助10
19秒前
lyn完成签到,获得积分10
19秒前
丘比特应助koito采纳,获得10
19秒前
包容水桃发布了新的文献求助10
20秒前
21秒前
22秒前
田田发布了新的文献求助10
22秒前
英俊的铭应助陶醉笑晴采纳,获得10
22秒前
金金金完成签到,获得积分20
23秒前
诚心一一完成签到,获得积分10
24秒前
25秒前
千筹发布了新的文献求助10
25秒前
清平道人完成签到,获得积分10
25秒前
独特乘云发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310425
求助须知:如何正确求助?哪些是违规求助? 2943334
关于积分的说明 8513915
捐赠科研通 2618566
什么是DOI,文献DOI怎么找? 1431182
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649599