亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Study of the Lead-Acid Battery Lifetime By Combining Electrochemical and Electrical Models

铅酸蓄电池 泰文定理 储能 荷电状态 电池(电) 等效电路 电气工程 计算机科学 电压 工程类 汽车工程 可靠性工程 功率(物理) 物理 量子力学
作者
Sergio Castañeda Ramírez,Diana Constanza Orozco,Rafael Esteban Ribadeneira Paz
出处
期刊:Meeting abstracts 卷期号:MA2018-03 (4): 250-250
标识
DOI:10.1149/ma2018-03/4/250
摘要

Energy generation with renewable sources demands energy storage coupling to maintain power quality in the electrical generation and supply for smart grids. Electrochemical energy storage in batteries has become the option due to compactivity, easy arrangement, economic factors and because it delivers nearly instant response both to input from the battery and output from the network to the battery. Among storage technologies, lead batteries offer a reliable, cost-effective solution which can be adapted for different types of energy storage applications (1-4). Predicting the lifetime of lead-acid batteries represents a challenge due to the irregularity of the cycling regime with charging and discharging intercepting each other constantly. To achieve better accuracy in the lifetime description it is desirable to combine performance and lifetime models. However, this is a complicated task due to different phenomena affecting lifetime such as corrosion, acid stratification, gassing, sulfation and sulfate crystal growth, and degradation of the active material (1, 3, 5-7) . One of the most representative models, presented by Schiffer and collaborators(7), based on the concept of ‘weighted Ah throughput’ used weighting factor to understand the full charge and partial state-of-charge cycling and its changes due to acid stratification, gassing, and high temperature. Corrosion effects are calculated based on battery voltage and temperature. Other models are based on equivalent circuit analysis. There are three type of electrical models such as: Thevenin, Impedance and Run-time based electrical models (8, 9). Thevenin’s model which uses a series resistor and an RC parallel network to predict battery response to transient load events at an specific state of charge (SOC), by assuming the open-circuit voltage is constant (9). The impedance model employs electrochemical impedance spectroscopy to obtain the AC-equivalent impedance model. However, the fitting process is difficult and only work for a fixed SOC and temperature setting. Runtime-based models use a complex circuit network to simulate battery runtime and DC voltage response for a constant discharge current. They can predict neither runtime nor voltage response for varying load currents accurately (9). However, most of these models are adjusted or obtaining from experimental data sets and are highly dependent on the parametrical adjustment to accurately describe the lifetime process. Moreover, phenomelogical description of process such as corrosion, gassing or sulfation are not quite understood under extreme temperature and operation conditions. The aim of this study is to combine electrochemical and electrical equations to describe the performance of lead-acid batteries. By combining Schiffer’s approach with Butler-Volmer type description of phenomena such as load current, corrosion processes and gassing, as function of temperature, we will gain insight and better description of ageing phenomena. Our proposed methodology can be summarized as: i) overpotential calculation based on experimental data, ii) load current calculation by using experimental overpotentials and Butler-Volmer equations as a function of temperature, iii) overpotential calculations such as corrosion and gassing with electrochemical models. Acknowledgement We gratefully acknowledge the support of the Universidad Nacional de Colombia - Sede Medellín with its 2018-2019 Research and Innovation project funding program for the project “Desarrollo de un simulador multiescala para estudio de procesos físico-químicos basado en teorías atómicas y moleculares Versión 2.0” References G. J. May, A. Davidson and B. Monahov, Journal of Energy Storage , 15 , 145 (2018). S. Sundararagavan and E. Baker, Solar Energy , 86 , 2707 (2012). J. Yang, C. Hu, H. Wang, K. Yang, B. Liu Jing and H. Yan, International Journal of Energy Research , 41 , 336 (2016). Z. Zhou, M. Benbouzid, J. Frédéric Charpentier, F. Scuiller and T. Tang, Renewable and Sustainable Energy Reviews , 18 , 390 (2013). A. Degla, M. Chikh, A. Chouder, F. Bouchafaa and A. Taallah, IET Renewable Power Generation , 12 , 484 (2018). H. Hao, A Review of the Positive Electrode Additives in Lead-Acid Batteries , p. 2329 (2018). J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager and R. Kaiser, Journal of Power Sources , 168 , 66 (2007). C. Min and G. A. Rincon-Mora, IEEE Transactions on Energy Conversion , 21 , 504 (2006). R. Dufo-López, J. M. Lujano-Rojas and J. L. Bernal-Agustín, Applied Energy , 115 , 242 (2014).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助一杯冰美式采纳,获得10
2秒前
苗条丹南完成签到 ,获得积分10
2秒前
顺利代曼发布了新的文献求助10
4秒前
DH完成签到 ,获得积分10
5秒前
科研通AI5应助解菜采纳,获得10
9秒前
9秒前
12秒前
陶醉的蜜蜂完成签到 ,获得积分10
16秒前
呵呵贺哈完成签到 ,获得积分10
17秒前
fuueer完成签到 ,获得积分0
20秒前
21秒前
22秒前
fay完成签到,获得积分10
24秒前
cc发布了新的文献求助10
27秒前
39秒前
科研通AI5应助cc采纳,获得10
41秒前
葡萄味的果茶完成签到 ,获得积分10
42秒前
43秒前
酷炫小伙完成签到,获得积分10
44秒前
超级芷文发布了新的文献求助10
44秒前
46秒前
小蘑菇应助科研通管家采纳,获得10
46秒前
汉堡包应助科研通管家采纳,获得10
46秒前
欢欢呀发布了新的文献求助10
47秒前
研友_VZG7GZ应助酷炫小伙采纳,获得10
48秒前
53秒前
Max发布了新的文献求助10
54秒前
rangshuman完成签到,获得积分10
56秒前
ktw完成签到,获得积分10
57秒前
解菜发布了新的文献求助10
58秒前
超级芷文完成签到,获得积分10
59秒前
我是老大应助fay采纳,获得10
1分钟前
俏皮的寄风完成签到,获得积分20
1分钟前
胡图图啦啦完成签到 ,获得积分10
1分钟前
1分钟前
fengliurencai完成签到,获得积分10
1分钟前
土豆你个西红柿完成签到 ,获得积分10
1分钟前
1分钟前
欢欢呀发布了新的文献求助10
1分钟前
义气的元柏完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516310
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9239912
捐赠科研通 2793645
什么是DOI,文献DOI怎么找? 1533155
邀请新用户注册赠送积分活动 712580
科研通“疑难数据库(出版商)”最低求助积分说明 707384