A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media

符号 2019年冠状病毒病(COVID-19) 柱头(植物学) 大流行 社会化媒体 恐慌 可视化 人工智能 计算机科学 心理学 数学 传染病(医学专业) 万维网 医学 精神科 疾病 算术 病理 焦虑
作者
Lin Liu,Zhidong Cao,Pengfei Zhao,Paul Jen‐Hwa Hu,Daniel Zeng,Yin Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 246-254 被引量:10
标识
DOI:10.1109/tcss.2022.3145404
摘要

The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( $p < 0.05$ ) and four ( $p < 0.01$ ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, $p < 0.01$ ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心新儿应助cosmos采纳,获得10
刚刚
刚刚
1秒前
一切都会好起来的完成签到,获得积分10
2秒前
2秒前
asheng98发布了新的文献求助10
2秒前
傻芙芙的完成签到,获得积分10
3秒前
沉默的康乃馨完成签到 ,获得积分10
4秒前
浮游应助张朝程采纳,获得20
4秒前
悠悠发布了新的文献求助10
4秒前
情怀应助坚强的笑天采纳,获得10
4秒前
KYTYYDS完成签到,获得积分10
4秒前
科研通AI6应助风净沙采纳,获得30
5秒前
Orange应助zycdx3906采纳,获得10
5秒前
ljj521314发布了新的文献求助10
6秒前
专一的白开水完成签到 ,获得积分10
6秒前
6秒前
JL完成签到 ,获得积分10
6秒前
7秒前
今后应助ylyla采纳,获得10
7秒前
actor2006发布了新的文献求助100
7秒前
打打应助鱼鱼采纳,获得10
7秒前
浮游应助陈思宏采纳,获得10
8秒前
9秒前
善良的采蓝完成签到,获得积分20
9秒前
万能图书馆应助丰富曼青采纳,获得10
9秒前
vax完成签到 ,获得积分10
9秒前
现实的艳一完成签到,获得积分10
9秒前
10秒前
multimodal发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
嘉悦发布了新的文献求助20
12秒前
阿呆发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
宋杓发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461306
求助须知:如何正确求助?哪些是违规求助? 4566276
关于积分的说明 14304569
捐赠科研通 4492010
什么是DOI,文献DOI怎么找? 2460639
邀请新用户注册赠送积分活动 1449964
关于科研通互助平台的介绍 1425599