A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media

符号 2019年冠状病毒病(COVID-19) 柱头(植物学) 大流行 社会化媒体 恐慌 可视化 人工智能 计算机科学 心理学 数学 传染病(医学专业) 万维网 医学 精神科 疾病 算术 病理 焦虑
作者
Lin Liu,Zhidong Cao,Pengfei Zhao,Paul Jen‐Hwa Hu,Daniel Zeng,Yin Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 246-254 被引量:10
标识
DOI:10.1109/tcss.2022.3145404
摘要

The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( $p < 0.05$ ) and four ( $p < 0.01$ ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, $p < 0.01$ ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxxxb完成签到,获得积分10
刚刚
刚刚
曲奇发布了新的文献求助10
1秒前
大白菜完成签到,获得积分10
1秒前
1秒前
赵纤完成签到,获得积分10
1秒前
ouou发布了新的文献求助10
1秒前
雨落瑾年发布了新的文献求助10
2秒前
2秒前
jianguo发布了新的文献求助10
2秒前
2秒前
吉吉完成签到 ,获得积分10
2秒前
Star1983发布了新的文献求助10
3秒前
3秒前
鉴湖完成签到,获得积分10
3秒前
阔达磬发布了新的文献求助10
3秒前
3秒前
充电宝应助缥缈的铅笔采纳,获得10
4秒前
朱事顺利完成签到,获得积分10
4秒前
火星上的冬云完成签到,获得积分10
4秒前
5秒前
Umar完成签到,获得积分20
5秒前
5秒前
pokect12138发布了新的文献求助30
5秒前
5秒前
denghuiying完成签到,获得积分20
6秒前
6秒前
暗号发布了新的文献求助10
6秒前
不加糖发布了新的文献求助10
6秒前
6秒前
7秒前
fsrm完成签到,获得积分10
7秒前
8秒前
8秒前
Minguk发布了新的文献求助10
9秒前
在水一方应助jbhb采纳,获得10
9秒前
coldstork发布了新的文献求助10
10秒前
睽阔完成签到 ,获得积分10
10秒前
456完成签到,获得积分10
11秒前
欧阳完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950635
求助须知:如何正确求助?哪些是违规求助? 3496094
关于积分的说明 11080521
捐赠科研通 3226507
什么是DOI,文献DOI怎么找? 1783918
邀请新用户注册赠送积分活动 867946
科研通“疑难数据库(出版商)”最低求助积分说明 800993