已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media

符号 2019年冠状病毒病(COVID-19) 柱头(植物学) 大流行 社会化媒体 恐慌 可视化 人工智能 计算机科学 心理学 数学 传染病(医学专业) 万维网 医学 精神科 疾病 算术 病理 焦虑
作者
Lin Liu,Zhidong Cao,Pengfei Zhao,Paul Jen‐Hwa Hu,Daniel Zeng,Yin Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 246-254 被引量:10
标识
DOI:10.1109/tcss.2022.3145404
摘要

The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( $p < 0.05$ ) and four ( $p < 0.01$ ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, $p < 0.01$ ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
5秒前
jzx发布了新的文献求助10
6秒前
可乐发布了新的文献求助10
8秒前
mathmotive完成签到,获得积分10
9秒前
9秒前
等待的虔完成签到,获得积分10
9秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
LPPQBB应助科研通管家采纳,获得50
12秒前
浮游应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
哈基米德应助科研通管家采纳,获得20
12秒前
哈基米德应助科研通管家采纳,获得20
12秒前
12秒前
大模型应助王壕采纳,获得10
19秒前
雷晨晨完成签到 ,获得积分10
20秒前
22秒前
土又鸟发布了新的文献求助10
22秒前
24秒前
24秒前
麻辣小龙虾完成签到,获得积分10
25秒前
25秒前
Zhou完成签到,获得积分10
25秒前
独特忆灵完成签到,获得积分10
30秒前
俏皮短靴发布了新的文献求助10
31秒前
慕青应助土又鸟采纳,获得10
31秒前
32秒前
32秒前
保奔完成签到,获得积分10
33秒前
TonyLee完成签到,获得积分10
33秒前
小马甲应助wop111采纳,获得10
34秒前
123发布了新的文献求助10
37秒前
银玥完成签到,获得积分20
41秒前
42秒前
华仔应助YT采纳,获得10
44秒前
保奔发布了新的文献求助10
47秒前
49秒前
jzx完成签到,获得积分10
49秒前
啊魏发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144