A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media

符号 2019年冠状病毒病(COVID-19) 柱头(植物学) 大流行 社会化媒体 恐慌 可视化 人工智能 计算机科学 心理学 数学 传染病(医学专业) 万维网 医学 精神科 疾病 算术 病理 焦虑
作者
Lin Liu,Zhidong Cao,Pengfei Zhao,Paul Jen‐Hwa Hu,Daniel Zeng,Yin Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 246-254 被引量:10
标识
DOI:10.1109/tcss.2022.3145404
摘要

The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( $p < 0.05$ ) and four ( $p < 0.01$ ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, $p < 0.01$ ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助huanir99采纳,获得10
2秒前
2秒前
星辰大海应助mouxq采纳,获得10
2秒前
典雅碧空发布了新的文献求助10
3秒前
iu发布了新的文献求助10
3秒前
3秒前
英俊的铭应助Cheung2121采纳,获得30
3秒前
爱笑以松发布了新的文献求助10
6秒前
上官若男应助好运莲莲采纳,获得10
7秒前
bjjtdx1997发布了新的文献求助10
7秒前
圆圆完成签到,获得积分10
7秒前
sleep应助危机的元风采纳,获得10
8秒前
蟑螂恶霸发布了新的文献求助10
8秒前
8秒前
完美世界应助ashley采纳,获得10
9秒前
123123应助等乙天采纳,获得10
9秒前
Cheung2121完成签到,获得积分10
10秒前
爱听歌的亦玉完成签到,获得积分20
11秒前
12秒前
微末发布了新的文献求助10
13秒前
爱笑以松完成签到,获得积分10
13秒前
13秒前
MAY发布了新的文献求助30
15秒前
99hz发布了新的文献求助10
16秒前
huanir99发布了新的文献求助10
17秒前
研友_VZG7GZ应助申思采纳,获得10
17秒前
zzznznnn完成签到,获得积分10
19秒前
JL完成签到 ,获得积分10
19秒前
MoNeng发布了新的文献求助10
21秒前
知止发布了新的文献求助10
22秒前
23秒前
23秒前
隐形曼青应助遮宁采纳,获得10
24秒前
elliotzzz完成签到,获得积分10
24秒前
xiaowang0710完成签到,获得积分10
24秒前
浮游应助微末采纳,获得10
25秒前
25秒前
wenwen完成签到,获得积分10
25秒前
27秒前
ding应助SCO采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563093
求助须知:如何正确求助?哪些是违规求助? 4647860
关于积分的说明 14683144
捐赠科研通 4590036
什么是DOI,文献DOI怎么找? 2518252
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462318