亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Learning Approach for Semantic Analysis of COVID-19-Related Stigma on Social Media

符号 2019年冠状病毒病(COVID-19) 柱头(植物学) 大流行 社会化媒体 恐慌 可视化 人工智能 计算机科学 心理学 数学 传染病(医学专业) 万维网 医学 精神科 疾病 算术 病理 焦虑
作者
Lin Liu,Zhidong Cao,Pengfei Zhao,Paul Jen‐Hwa Hu,Daniel Zeng,Yin Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 246-254 被引量:10
标识
DOI:10.1109/tcss.2022.3145404
摘要

The rapid spread of the pandemic of coronavirus disease of 2019 (COVID-19) has created an unprecedented, global health disaster. During the outburst period, the paucity of knowledge and research aggravated devastating panic and fears that lead to social stigma and created serious obstacles to contain the disastrous epidemic. We propose a deep learning-based method to detect stigmatized contents on online social network (OSN) platforms in the early stage of COVID-19. Our method performs a semantic-based quantitative analysis to unveil essential spatial-temporal characteristics of COVID-19 stigmatization for timely alerts and risk mitigation. Empirical evaluations are carried out to examine our method’s predictive utilities. The visualization results of the co-occurrence network using Gephi indicate two distinct groups of stigmatized words that pertain to people in Wuhan and their dietary behaviors, respectively. Netizens’ participations and stigmatizations in the Hubei region, where the COVID-19 broke out, are twice ( $p < 0.05$ ) and four ( $p < 0.01$ ) times more frequent and intense than those in other parts of China, respectively. Also, the number of COVID-19 patients is correlated with COVID-19-related stigma significantly (correlation coefficient = 0.838, $p < 0.01$ ). The responses to individual users’ posts have the power law distribution, while posts by official media appear to attract more responses (e.g., likes, replies, and forward). Our method can help platforms and government agencies manage public health disasters through effective identification and detailed analyses of social stigma on social media.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
瑞雪发布了新的文献求助10
24秒前
瑞雪完成签到,获得积分10
32秒前
34秒前
47秒前
56秒前
59秒前
Cmqq发布了新的文献求助10
1分钟前
充电宝应助zhouxunnjau采纳,获得10
1分钟前
果果发布了新的文献求助10
1分钟前
所所应助Cmqq采纳,获得10
1分钟前
小马甲应助吱吱草莓派采纳,获得10
1分钟前
欣喜秋天完成签到,获得积分20
1分钟前
领导范儿应助吱吱草莓派采纳,获得10
1分钟前
1分钟前
大牛牛完成签到,获得积分10
1分钟前
过眼云烟完成签到,获得积分10
1分钟前
求学发布了新的文献求助10
1分钟前
1分钟前
clickable发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
佳佳发布了新的文献求助10
2分钟前
果果完成签到,获得积分20
2分钟前
共享精神应助孔踏歌采纳,获得10
2分钟前
2分钟前
2分钟前
Cmqq发布了新的文献求助10
2分钟前
吃瓜群众完成签到,获得积分10
2分钟前
zhouxunnjau发布了新的文献求助10
2分钟前
小江发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
完美世界应助小江采纳,获得10
2分钟前
求学完成签到,获得积分10
2分钟前
在水一方应助求学采纳,获得10
2分钟前
loser完成签到 ,获得积分10
2分钟前
大模型应助Cmqq采纳,获得10
2分钟前
清浅完成签到 ,获得积分10
2分钟前
zeice完成签到 ,获得积分10
2分钟前
阔达白凡完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904