Modeling the effects of state of charge and temperature on calendar capacity loss of nickel-manganese-cobalt lithium-ion batteries

电池(电) 锂(药物) 荷电状态 离子 材料科学 电荷(物理) 国家(计算机科学) 无机化学 化学 热力学 冶金 计算机科学 物理 功率(物理) 心理学 有机化学 量子力学 算法 精神科
作者
Boman Su,Xinyou Ke,Chris Yuan
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:49: 104105-104105 被引量:18
标识
DOI:10.1016/j.est.2022.104105
摘要

• An electrochemical model was applied to study the battery calendar capacity loss. • Modeling results was validated with experimental data of an 18,650 Li-ion cell. • Factors affecting the calendar loss of NMC-graphite Li-ion battery were studied. • A lower temperature and a lower SOC lead to a smaller calendar capacity loss. Lithium-ion (Li-ion) batteries with nickel-manganese-cobalt (NMC) cathode and graphite anode are popularly used in portable electronic devices and electric vehicles. Calendar loss of the lithium-ion battery is a dominating factor in battery degradation during long-term usage. However, only a few physics-based modeling works were reported on studying the calendar capacity loss of NMC-graphite Li-ion batteries, while none of them can depict the complete voltage behavior during the storage period. In this work, a Pseudo-2D model for an NMC-graphite Li-ion battery was developed and applied to investigate its calendar loss behavior. Various factors affecting the calendar loss of the NMC-graphite batteries were systematically studied, with the results validated using experimental data of a Sanyo 18,650 cylindrical cell. It was found that at 25 °C working temperature and 100% state of charge (SOC), the capacity drops 6.3% of its original capacity after 10 months. Our simulation results demonstrate that a lower SOC and a proper cell working temperature could prolong the battery life during the storage period. This modeling work can help improve understanding of the calendar loss behavior of NMC-graphite Li-ion batteries and provide valuable guidance for battery performance optimization in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
蒋皓天完成签到,获得积分10
2秒前
2秒前
2秒前
wu完成签到 ,获得积分10
2秒前
尊敬吐司完成签到,获得积分10
2秒前
Emiya完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
一往之前发布了新的文献求助10
6秒前
共享精神应助Zlq采纳,获得10
6秒前
6秒前
852应助qiuling采纳,获得10
6秒前
啦啦康完成签到,获得积分10
6秒前
昊昊完成签到 ,获得积分10
7秒前
尊敬吐司发布了新的文献求助10
7秒前
min发布了新的文献求助10
8秒前
8秒前
8秒前
小石完成签到,获得积分10
8秒前
8秒前
Sukey完成签到,获得积分10
9秒前
9秒前
djdj发布了新的文献求助10
10秒前
阿莫西林发布了新的文献求助10
11秒前
12秒前
万能图书馆应助一往之前采纳,获得10
12秒前
MineMine应助任风采纳,获得10
13秒前
小郭发布了新的文献求助10
13秒前
罗大大完成签到 ,获得积分0
13秒前
炸鸡柳完成签到,获得积分20
13秒前
浮游应助coco采纳,获得10
13秒前
13秒前
elysia发布了新的文献求助10
13秒前
13秒前
淹死的鱼应助小列巴采纳,获得10
14秒前
田様应助zxh采纳,获得10
15秒前
二狗完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4959834
求助须知:如何正确求助?哪些是违规求助? 4220417
关于积分的说明 13142469
捐赠科研通 4004181
什么是DOI,文献DOI怎么找? 2191268
邀请新用户注册赠送积分活动 1205625
关于科研通互助平台的介绍 1116888