Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph

人工智能 计算机科学 计算机视觉 断层摄影术 迭代重建 分辨率(逻辑) 高分辨率 图像(数学) 核医学 放射科 遥感 地质学 医学
作者
Shaolin Lu,Shibo Li,Yu Wang,Lihai Zhang,Ying Hu,Bing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085004-085004 被引量:4
标识
DOI:10.1088/1361-6560/ac508d
摘要

Abstract Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助宿舍采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
4秒前
英姑应助苏木采纳,获得10
4秒前
蓝胖子发布了新的文献求助20
4秒前
4秒前
wzl发布了新的文献求助10
5秒前
安详的冰棍完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
5秒前
小谢同学发布了新的文献求助10
6秒前
6秒前
6秒前
小蘑菇应助巴拉采纳,获得10
6秒前
笃定发布了新的文献求助10
7秒前
7秒前
7秒前
ding应助Hilda007采纳,获得10
8秒前
迷人绿茶发布了新的文献求助10
8秒前
8秒前
jzyyn发布了新的文献求助10
9秒前
9秒前
桐桐应助AI imaging采纳,获得30
10秒前
大黄豆完成签到,获得积分10
10秒前
11秒前
11秒前
99999sun发布了新的文献求助10
11秒前
xiaolei完成签到 ,获得积分10
12秒前
13秒前
14秒前
妥妥酱发布了新的文献求助10
14秒前
Foch发布了新的文献求助10
14秒前
天造材发布了新的文献求助10
14秒前
NexusExplorer应助晨曦采纳,获得10
14秒前
15秒前
yao发布了新的文献求助10
15秒前
阿佑完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351