Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph

人工智能 计算机科学 计算机视觉 断层摄影术 迭代重建 分辨率(逻辑) 高分辨率 图像(数学) 核医学 放射科 遥感 地质学 医学
作者
Shaolin Lu,Shibo Li,Yu Wang,Lihai Zhang,Ying Hu,Bing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085004-085004 被引量:4
标识
DOI:10.1088/1361-6560/ac508d
摘要

Abstract Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
超级巨佬发布了新的文献求助10
1秒前
zyy发布了新的文献求助30
3秒前
酷酷的觅荷完成签到,获得积分10
4秒前
5秒前
5秒前
datiancaihaha完成签到,获得积分10
6秒前
雪酪芋泥球完成签到 ,获得积分10
7秒前
乐观的颦完成签到,获得积分10
7秒前
陈雨行完成签到 ,获得积分10
9秒前
9秒前
JJJJJJJJJJJ发布了新的文献求助10
9秒前
小唐完成签到,获得积分10
10秒前
orixero应助lily采纳,获得10
10秒前
10秒前
陶宇发布了新的文献求助10
11秒前
11秒前
12秒前
光合谷完成签到,获得积分10
12秒前
情怀应助等待的以筠采纳,获得50
14秒前
Twonej应助datiancaihaha采纳,获得30
16秒前
16秒前
huahua发布了新的文献求助30
16秒前
量子星尘发布了新的文献求助30
16秒前
17秒前
小蕾发布了新的文献求助10
18秒前
19秒前
19秒前
lily发布了新的文献求助10
21秒前
hhhhhhhhhh完成签到 ,获得积分10
23秒前
23秒前
鲤鱼手机发布了新的文献求助50
23秒前
囚徒发布了新的文献求助10
24秒前
24秒前
KaleemUllah发布了新的文献求助10
25秒前
huahua完成签到,获得积分10
25秒前
英吉利25发布了新的文献求助30
27秒前
Jianfeng完成签到,获得积分10
27秒前
haha关注了科研通微信公众号
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841