已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prior information-based high-resolution tomography image reconstruction from single digitally reconstruction radiograph

人工智能 计算机科学 计算机视觉 断层摄影术 迭代重建 卷积神经网络 投影(关系代数) 深度学习 特征(语言学) 图像分辨率 放射科 医学 算法 语言学 哲学
作者
Shaolin Lu,Shibo Li,Yu Wang,Ying Hu,Lihai Zhang,Bing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ac508d
摘要

Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨发布了新的文献求助10
2秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
pluto应助Cathy采纳,获得30
4秒前
激昂的夏蓉完成签到,获得积分10
4秒前
一夜很静完成签到,获得积分10
6秒前
haobuweiju发布了新的文献求助10
6秒前
星辰大海应助celine采纳,获得10
8秒前
9秒前
9秒前
777完成签到 ,获得积分10
11秒前
科研通AI2S应助奔奔采纳,获得10
14秒前
隐形盼海发布了新的文献求助10
14秒前
小小牛完成签到 ,获得积分10
15秒前
汉堡包应助一十六采纳,获得10
17秒前
Solomon完成签到 ,获得积分0
17秒前
22秒前
22秒前
可爱的函函应助626采纳,获得10
23秒前
24秒前
科研通AI2S应助果汁橡皮糖采纳,获得10
25秒前
汉堡包应助果汁橡皮糖采纳,获得10
25秒前
上官若男应助果汁橡皮糖采纳,获得10
25秒前
完美世界应助果汁橡皮糖采纳,获得10
25秒前
8R60d8应助果汁橡皮糖采纳,获得10
25秒前
方越应助果汁橡皮糖采纳,获得10
25秒前
bkagyin应助果汁橡皮糖采纳,获得30
25秒前
华仔应助果汁橡皮糖采纳,获得10
25秒前
allen发布了新的文献求助10
27秒前
28秒前
一十六发布了新的文献求助10
28秒前
木笔朱瑾发布了新的文献求助10
28秒前
Polymer72发布了新的文献求助30
29秒前
隐形盼海完成签到 ,获得积分10
29秒前
打打应助jiangmax采纳,获得10
30秒前
31秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597504
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444303
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628