Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph

人工智能 计算机科学 计算机视觉 断层摄影术 迭代重建 分辨率(逻辑) 高分辨率 图像(数学) 核医学 放射科 遥感 地质学 医学
作者
Shaolin Lu,Shibo Li,Yu Wang,Lihai Zhang,Ying Hu,Bing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085004-085004 被引量:4
标识
DOI:10.1088/1361-6560/ac508d
摘要

Abstract Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jingjing完成签到 ,获得积分10
刚刚
1秒前
君尧发布了新的文献求助10
1秒前
FashionBoy应助王宽宽宽采纳,获得10
1秒前
1秒前
科研通AI6应助王志新采纳,获得10
1秒前
2秒前
魏家乐完成签到,获得积分10
2秒前
wyuwqhjp发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
3秒前
酷酷怀曼完成签到,获得积分10
3秒前
华仔应助QWE采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
hezhuyou发布了新的文献求助10
3秒前
江山完成签到,获得积分10
3秒前
3秒前
4秒前
斯文败类应助安安采纳,获得10
5秒前
5秒前
6秒前
6秒前
娃娃菜妮发布了新的文献求助10
6秒前
orange发布了新的文献求助10
6秒前
7秒前
去玩儿发布了新的文献求助10
7秒前
哈哈哈哈完成签到,获得积分10
7秒前
滕可燕完成签到,获得积分10
7秒前
8秒前
小蘑菇应助刚国忠采纳,获得10
8秒前
mylove应助Sid采纳,获得10
9秒前
承乐发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
王宽宽宽完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836