Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph

人工智能 计算机科学 计算机视觉 断层摄影术 迭代重建 分辨率(逻辑) 高分辨率 图像(数学) 核医学 放射科 遥感 地质学 医学
作者
Shaolin Lu,Shibo Li,Yu Wang,Lihai Zhang,Ying Hu,Bing Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (8): 085004-085004 被引量:4
标识
DOI:10.1088/1361-6560/ac508d
摘要

Abstract Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
4秒前
帮帮我发布了新的文献求助10
4秒前
听听完成签到,获得积分10
5秒前
博修发布了新的文献求助10
5秒前
6秒前
英姑应助小鱼采纳,获得10
6秒前
HE完成签到 ,获得积分10
7秒前
何垠禹发布了新的文献求助30
7秒前
酷波er应助zhaoyali采纳,获得10
8秒前
czb666完成签到,获得积分10
8秒前
8秒前
pu完成签到,获得积分20
8秒前
申申完成签到,获得积分10
8秒前
9秒前
光年完成签到,获得积分10
9秒前
万能图书馆应助bx采纳,获得10
10秒前
放大镜发布了新的文献求助10
10秒前
jgs驳回了Lucas应助
11秒前
11秒前
11秒前
辛勤的乌发布了新的文献求助10
11秒前
wanci应助听听采纳,获得10
11秒前
木影忆完成签到 ,获得积分10
11秒前
pu发布了新的文献求助10
11秒前
12秒前
14秒前
14秒前
15秒前
wdy完成签到,获得积分10
16秒前
16秒前
陈二牛发布了新的文献求助10
17秒前
17秒前
柔弱思山发布了新的文献求助10
17秒前
17秒前
lyq007完成签到,获得积分10
18秒前
18秒前
靓丽衫完成签到 ,获得积分10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149