Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: A systematic review and meta-analysis

荟萃分析 神经心理学 双相情感障碍 线性判别分析 机器学习 人工智能 心理学 神经影像学 系统回顾 临床心理学 梅德林 医学 精神科 内科学 认知 计算机科学 生物 生物化学
作者
F. Colombo,F. Calesella,Mario Gennaro Mazza,Elisa Melloni,Marco J. Morelli,Giulia Maria Scotti,Francesco Benedetti,Irene Bollettini,Benedetta Vai
出处
期刊:Neuroscience & Biobehavioral Reviews [Elsevier BV]
卷期号:135: 104552-104552 被引量:21
标识
DOI:10.1016/j.neubiorev.2022.104552
摘要

Applying machine learning (ML) to objective markers may overcome prognosis uncertainty due to the subjective nature of the diagnosis of bipolar disorder (BD). This PRISMA-compliant meta-analysis provides new systematic evidence of the BD classification accuracy reached by different markers and ML algorithms. We focused on neuroimaging, electrophysiological techniques, peripheral biomarkers, genetic data, neuropsychological or clinical measures, and multimodal approaches. PubMed, Embase and Scopus were searched through 3rd December 2020. Meta-analyses were performed using random-effect models. Overall, 81 studies were included in this systematic review and 65 in the meta-analysis (11,336 participants, 3903 BD). The overall pooled classification accuracy was 0.77 (95%CI[0.75;0.80]). Despite subgroup analyses for diagnostic comparison group, psychiatric disorders, marker, ML algorithm, and validation procedure were not significant, linear discriminant analysis significantly outperformed support vector machine for peripheral biomarkers (p = 0.03). Sample size was inversely related to accuracy. Evidence of publication bias was detected. Ultimately, although ML reached a high accuracy in differentiating BD from other psychiatric disorders, best practices in methodology are needed for the advancement of future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英勇睿渊完成签到,获得积分10
2秒前
3秒前
杨yang完成签到 ,获得积分10
4秒前
香蕉若风完成签到,获得积分10
6秒前
九湖夷上完成签到,获得积分10
7秒前
7秒前
7秒前
mao发布了新的文献求助10
7秒前
9秒前
bkagyin应助时刻保持质疑采纳,获得10
9秒前
10秒前
七柚完成签到 ,获得积分10
10秒前
10秒前
11秒前
hlmzyq完成签到,获得积分10
11秒前
阿呆盘阿瓜完成签到,获得积分10
12秒前
13秒前
hushus发布了新的文献求助10
13秒前
13秒前
闪闪凡霜完成签到,获得积分10
14秒前
jxp完成签到,获得积分10
14秒前
14秒前
nn发布了新的文献求助10
15秒前
15秒前
cardiodynia发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
十一发布了新的文献求助10
19秒前
田様应助轻松的小海豚采纳,获得10
20秒前
開心发布了新的文献求助10
22秒前
龅牙苏发布了新的文献求助10
22秒前
22秒前
CodeCraft应助韵寒采纳,获得10
23秒前
稳重寻雪关注了科研通微信公众号
23秒前
稳重寻雪关注了科研通微信公众号
24秒前
冒险寻羊完成签到,获得积分10
24秒前
KH完成签到,获得积分10
26秒前
田様应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765692
求助须知:如何正确求助?哪些是违规求助? 3310244
关于积分的说明 10154044
捐赠科研通 3025594
什么是DOI,文献DOI怎么找? 1660541
邀请新用户注册赠送积分活动 793476
科研通“疑难数据库(出版商)”最低求助积分说明 755616