亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨山芙完成签到 ,获得积分10
9秒前
CH完成签到 ,获得积分10
16秒前
李佳倩完成签到 ,获得积分10
42秒前
阿狸完成签到 ,获得积分0
42秒前
52秒前
54秒前
Koala04完成签到,获得积分10
1分钟前
1分钟前
cy0824完成签到 ,获得积分10
1分钟前
飞快的孱发布了新的文献求助10
1分钟前
2分钟前
jitianxing发布了新的文献求助10
2分钟前
2分钟前
2分钟前
科研通AI5应助jitianxing采纳,获得10
4分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
forest完成签到,获得积分10
5分钟前
5分钟前
jitianxing发布了新的文献求助10
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
冷傲半邪完成签到,获得积分10
6分钟前
无幻完成签到 ,获得积分10
6分钟前
松松完成签到 ,获得积分10
6分钟前
6分钟前
CES_SH完成签到,获得积分10
6分钟前
数乱了梨花完成签到 ,获得积分0
6分钟前
已知中的未知完成签到 ,获得积分10
6分钟前
7分钟前
袁梦发布了新的文献求助10
7分钟前
科研通AI6应助袁梦采纳,获得10
7分钟前
上官若男应助马良采纳,获得10
7分钟前
贰鸟完成签到,获得积分0
7分钟前
8分钟前
科研通AI5应助jitianxing采纳,获得10
8分钟前
马良发布了新的文献求助10
8分钟前
8分钟前
花落无声完成签到 ,获得积分10
8分钟前
jitianxing发布了新的文献求助10
8分钟前
jitianxing完成签到,获得积分20
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069