亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LY完成签到,获得积分10
3秒前
3秒前
5秒前
cjh发布了新的文献求助10
5秒前
5秒前
nice应助sss采纳,获得10
6秒前
暴躁读研人本伟完成签到,获得积分10
8秒前
lightxyz发布了新的文献求助10
8秒前
ding应助绳索上行走采纳,获得50
9秒前
上官完成签到 ,获得积分10
10秒前
SiboN发布了新的文献求助10
11秒前
14秒前
老张完成签到 ,获得积分10
20秒前
暴躁读研人本伟关注了科研通微信公众号
25秒前
小蘑菇应助z610938841采纳,获得10
26秒前
28秒前
31秒前
33秒前
yue关注了科研通微信公众号
34秒前
Niny完成签到,获得积分10
36秒前
Isaac完成签到 ,获得积分10
38秒前
z610938841发布了新的文献求助10
38秒前
皮皮团完成签到 ,获得积分10
39秒前
41秒前
hha发布了新的文献求助10
47秒前
49秒前
wvv关注了科研通微信公众号
49秒前
49秒前
Wang_JN完成签到 ,获得积分10
50秒前
_元发布了新的文献求助10
53秒前
轩辕山槐完成签到,获得积分10
54秒前
55秒前
hwen1998完成签到 ,获得积分10
56秒前
Nick完成签到 ,获得积分0
57秒前
yue发布了新的文献求助10
58秒前
1分钟前
_元完成签到,获得积分10
1分钟前
白榆完成签到 ,获得积分10
1分钟前
天天快乐应助cjh采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944591
求助须知:如何正确求助?哪些是违规求助? 4209453
关于积分的说明 13085313
捐赠科研通 3989186
什么是DOI,文献DOI怎么找? 2184034
邀请新用户注册赠送积分活动 1199383
关于科研通互助平台的介绍 1112390