Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助朴实初夏采纳,获得10
刚刚
haowang发布了新的文献求助10
1秒前
1秒前
秋海棠发布了新的文献求助10
3秒前
FashionBoy应助吹气球的金毛采纳,获得10
3秒前
Orange应助石董宝宝采纳,获得10
5秒前
上官若男应助小凉采纳,获得10
5秒前
6秒前
萧不凡发布了新的文献求助50
6秒前
7秒前
无限的含羞草完成签到,获得积分10
8秒前
SciGPT应助所有事情都上岸采纳,获得10
9秒前
阿腾发布了新的文献求助10
11秒前
子衿完成签到 ,获得积分10
11秒前
如约而至发布了新的文献求助10
12秒前
Dayon完成签到 ,获得积分10
13秒前
14秒前
17秒前
寒冷寒安发布了新的文献求助10
17秒前
17秒前
斯文败类应助小蒋采纳,获得10
18秒前
Fx发布了新的文献求助10
22秒前
23秒前
24秒前
123完成签到,获得积分10
24秒前
24秒前
如约而至完成签到,获得积分20
26秒前
ding应助马界泡泡采纳,获得10
27秒前
zedmaster完成签到,获得积分10
27秒前
科研通AI2S应助IAMXC采纳,获得10
27秒前
Wang发布了新的文献求助10
28秒前
儒雅紫夏发布了新的文献求助10
28秒前
Cc发布了新的文献求助10
28秒前
yoyo发布了新的文献求助10
28秒前
金燕子完成签到 ,获得积分0
29秒前
30秒前
石董宝宝发布了新的文献求助10
31秒前
薰硝壤应助灵巧冷菱采纳,获得10
31秒前
31秒前
科研通AI2S应助谦让的樱采纳,获得10
34秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140918
求助须知:如何正确求助?哪些是违规求助? 2791878
关于积分的说明 7800737
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302404
科研通“疑难数据库(出版商)”最低求助积分说明 626548
版权声明 601226