亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助opp采纳,获得10
6秒前
xiying完成签到 ,获得积分10
13秒前
Dreamchaser完成签到,获得积分10
37秒前
qiu发布了新的文献求助10
38秒前
研友_850aeZ完成签到,获得积分0
47秒前
小超人完成签到 ,获得积分10
47秒前
大胆的自行车完成签到 ,获得积分10
1分钟前
hwjg发布了新的文献求助10
1分钟前
Murphy完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
YYL完成签到 ,获得积分10
1分钟前
sube完成签到 ,获得积分10
1分钟前
NI完成签到 ,获得积分10
1分钟前
桐桐应助ceeray23采纳,获得20
1分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
Panini完成签到 ,获得积分10
2分钟前
2分钟前
圆润润呐发布了新的文献求助10
2分钟前
自信书文完成签到 ,获得积分10
2分钟前
orixero应助萌道采纳,获得10
2分钟前
甜美的沅完成签到 ,获得积分10
2分钟前
2分钟前
opp发布了新的文献求助10
2分钟前
顺心成仁完成签到 ,获得积分10
2分钟前
义气幼珊完成签到 ,获得积分10
3分钟前
耶椰耶完成签到 ,获得积分10
3分钟前
李健的小迷弟应助142857采纳,获得10
3分钟前
阳光大山完成签到 ,获得积分10
3分钟前
CodeCraft应助莱万特采纳,获得10
3分钟前
3分钟前
3分钟前
萌道发布了新的文献求助10
3分钟前
香蕉觅云应助wang采纳,获得10
3分钟前
莱万特发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558406
求助须知:如何正确求助?哪些是违规求助? 4643430
关于积分的说明 14670992
捐赠科研通 4584754
什么是DOI,文献DOI怎么找? 2515164
邀请新用户注册赠送积分活动 1489224
关于科研通互助平台的介绍 1459808