Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
李健应助happy采纳,获得10
刚刚
文献小白完成签到 ,获得积分10
1秒前
浮游应助激动的访波采纳,获得10
1秒前
bkagyin应助激动的访波采纳,获得10
1秒前
2秒前
可闲发布了新的文献求助10
3秒前
4秒前
行寂静行完成签到 ,获得积分10
5秒前
自觉语琴完成签到 ,获得积分10
6秒前
NMC发布了新的文献求助10
7秒前
共享精神应助小宇OvO采纳,获得10
8秒前
机灵毛豆完成签到 ,获得积分10
8秒前
刘清河发布了新的文献求助10
8秒前
小禾完成签到 ,获得积分10
9秒前
10秒前
zjy完成签到,获得积分10
10秒前
10秒前
11秒前
齐齐完成签到,获得积分20
11秒前
shr完成签到,获得积分10
12秒前
奥拉同学完成签到,获得积分10
13秒前
易水完成签到 ,获得积分10
13秒前
happy发布了新的文献求助10
13秒前
可闲完成签到,获得积分20
14秒前
16秒前
柚柚子完成签到,获得积分10
19秒前
精油完成签到,获得积分10
19秒前
21秒前
mr完成签到 ,获得积分10
22秒前
中论文呢发布了新的文献求助10
23秒前
23秒前
23秒前
感动的莞发布了新的文献求助10
24秒前
糜灭龙完成签到,获得积分10
27秒前
科研通AI6应助tong采纳,获得10
27秒前
小宇OvO发布了新的文献求助10
28秒前
29秒前
封听白完成签到,获得积分0
29秒前
Shan完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499097
求助须知:如何正确求助?哪些是违规求助? 4596115
关于积分的说明 14452329
捐赠科研通 4529231
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465897
关于科研通互助平台的介绍 1438802