Joint scheduling and resource allocation for federated learning in SWIPT-enabled micro UAV swarm networks

计算机科学 群体行为 无线 基站 调度(生产过程) 分布式计算 强化学习 群体智能 学习迁移 粒子群优化 人工智能 机器学习 数学优化 计算机网络 电信 数学
作者
Wanli Wen,Yunjian Jia,Wenchao Xia
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:19 (1): 119-135 被引量:6
标识
DOI:10.23919/jcc.2022.01.010
摘要

Micro-UAV swarms usually generate massive data when performing tasks. These data can be harnessed with various machine learning (ML) algorithms to improve the swarm's intelligence. To achieve this goal while protecting swarm data privacy, federated learning (FL) has been proposed as a promising enabling technology. During the model training process of FL, the UAV may face an energy scarcity issue due to the limited battery capacity. Fortunately, this issue is potential to be tackled via simultaneous wireless information and power transfer (SWIPT). However, the integration of SWIPT and FL brings new challenges to the system design that have yet to be addressed, which motivates our work. Specifically, in this paper, we consider a micro-UAV swarm network consisting of one base station (BS) and multiple UAVs, where the BS uses FL to train an ML model over the data collected by the swarm. During training, the BS broadcasts the model and energy simultaneously to the UAVs via SWIPT, and each UAV relies on its harvested and battery-stored energy to train the received model and then upload it to the BS for model aggregation. To improve the learning performance, we formulate a problem of maximizing the percentage of scheduled UAVs by jointly optimizing UAV scheduling and wireless resource allocation. The problem is a challenging mixed integer nonlinear programming problem and is NP-hard in general. By exploiting its special structure property, we develop two algorithms to achieve the optimal and suboptimal solutions, respectively. Numerical results show that the suboptimal algorithm achieves a near-optimal performance under various network setups, and significantly outperforms the existing representative baselines. considered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稳重夜绿完成签到,获得积分10
1秒前
2秒前
仙乐完成签到,获得积分10
3秒前
SciGPT应助研友_zndKVL采纳,获得10
4秒前
4秒前
5秒前
老实迎丝发布了新的文献求助10
5秒前
lslslslsllss发布了新的文献求助20
8秒前
南南发布了新的文献求助10
10秒前
wanci应助老实迎丝采纳,获得10
10秒前
mcxkjnv完成签到,获得积分10
11秒前
寻找组织应助哈尼妞妞122采纳,获得30
13秒前
科研通AI6应助楠瓜采纳,获得10
13秒前
14秒前
默默襄发布了新的文献求助10
14秒前
浮游应助结实向真采纳,获得10
15秒前
王俊发布了新的文献求助20
18秒前
今后应助imagine采纳,获得10
22秒前
川农辅导员完成签到,获得积分10
23秒前
胡萝卜完成签到,获得积分10
24秒前
信号灯发布了新的文献求助10
25秒前
lslslslsllss发布了新的文献求助20
26秒前
26秒前
27秒前
小猛人发布了新的文献求助10
27秒前
29秒前
30秒前
小苗发布了新的文献求助10
32秒前
33秒前
研究菜鸟发布了新的文献求助10
35秒前
35秒前
勤耕苦读完成签到,获得积分10
35秒前
无聊的爆米花完成签到,获得积分10
35秒前
大模型应助柚一采纳,获得10
36秒前
imagine发布了新的文献求助10
38秒前
39秒前
大个应助baocq采纳,获得10
40秒前
张蕊发布了新的文献求助10
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992