Multiscale transunet + + : dense hybrid U-Net with transformer for medical image segmentation

计算机科学 编码器 人工智能 分割 模式识别(心理学) 图像分割 变压器 像素 计算机视觉 尺度空间分割 电压 量子力学 操作系统 物理
作者
Wang Bo,Fan Wang,Pengwei Dong,Chongyi Li
出处
期刊:Signal, Image and Video Processing [Springer Nature]
卷期号:16 (6): 1607-1614 被引量:22
标识
DOI:10.1007/s11760-021-02115-w
摘要

Automatic medical image segmentation as assistance to doctors is important for diagnosis and treatment of various diseases. TransUNet that integrates the advantages of transformer and CNN has achieved success in medical image segmentation tasks. However, TransUNet simply combines feature maps between encoder and decoder via skip connections at the same resolution, which leads to be an unnecessarily restrictive fusion design. Moreover, the positional encoding and input tokens in standard transformer blocks of TransUNet have a fixed scale, which are not suitable for dense prediction. To alleviate the above problems, in this paper, we propose a novel architecture named multiscale TransUNet + + (MS-TransUNet + +), which employs a multiscale and flexible feature fusion scheme between encoder and decoder at different levels. The novel skip connections densely bridge the extracted feature representations with different resolutions, and the hybrid CNN-Transformer encoder with long-range dependencies directly passes the high-level features to each stage of decoder. Besides, in order to obtain more effective feature representations, an efficient multi-scale visual transformer is introduced for feature encoder. More importantly, we employ a weighted loss function composed of focal, multiscale structure similarity and Jaccard index to penalize the training error of medical image segmentation, jointly realizing pixel-level, patch-level and map-level optimization. Extensive experimental results demonstrate that our proposed multiscale TransUNet + + can achieve competitive performance for prostate MR and liver CT image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助jy采纳,获得10
刚刚
1秒前
我是站长才怪应助Khr1stINK采纳,获得10
1秒前
2秒前
xh完成签到,获得积分10
3秒前
para_团结完成签到,获得积分10
4秒前
怡然剑成发布了新的文献求助10
4秒前
5秒前
5秒前
ipeakkka发布了新的文献求助10
5秒前
George完成签到,获得积分10
7秒前
WDK完成签到,获得积分10
7秒前
情怀应助敏感的芷采纳,获得10
7秒前
Orange应助方勇飞采纳,获得10
8秒前
FashionBoy应助烂漫驳采纳,获得10
8秒前
9秒前
10秒前
大鱼完成签到,获得积分10
10秒前
10秒前
lu完成签到,获得积分10
11秒前
Murphy完成签到 ,获得积分10
11秒前
斯文败类应助大方嵩采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得30
12秒前
hh应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
ding应助科研通管家采纳,获得20
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
sutharsons应助科研通管家采纳,获得200
13秒前
orixero应助科研通管家采纳,获得10
13秒前
许多知识发布了新的文献求助10
14秒前
FashionBoy应助su采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824