NR-CNN: Nested-Residual Guided CNN In-loop Filtering for Video Coding

计算机科学 残余物 人工智能 深度学习 卷积神经网络 编码(社会科学) 编解码器 色度 模式识别(心理学) 算法 亮度 数学 统计 计算机硬件
作者
Kai Lin,Chuanmin Jia,Xinfeng Zhang,Shiqi Wang,Siwei Ma,Wen Gao
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:18 (4): 1-22 被引量:6
标识
DOI:10.1145/3502723
摘要

Recently, deep learning for video coding, such as deep predictive coding, deep transform coding, and deep in-loop filtering, has been an emerging research area. The coding gain of hybrid coding framework could be extensively promoted by the data-driven models. However, previous deep coding tools especially deep in-loop filtering mainly consider the performance improvement while pay less attention to the reliability, usability, and adaptivity of the networks. In this article, a nested-residual guided convolutional neural network (NR-CNN) structure with cascaded global shortcut and configurable residual blocks is proposed for in-loop filtering. By taking advantage of the correlation between different color components, we further extend the NR-CNN by utilizing luminance as textural and structural guidance for chrominance filtering, which significantly improves the filtering performance. To fully exploit the proposed network into codec integration, we subsequently introduce an efficient and adaptive framework consisting of an adaptive granularity optimization and a parallel inference pipeline for deep learning based filtering. The former contributes to the coding performance improvement through an adaptive decision-making based on rate-distortion analysis at various granularities. The latter reduces the running time of network inference. The extensive experimental results show the superiority of the proposed method, achieving 8.2%, 14.9%, and 13.2% BD-rate savings on average under random access (RA) configuration. Meanwhile, the proposed method also obtains better subjective quality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
何意味完成签到 ,获得积分10
2秒前
水木年华发布了新的文献求助10
2秒前
4秒前
4秒前
彭于晏应助欣喜的尔曼采纳,获得10
4秒前
5秒前
木又权完成签到,获得积分10
6秒前
能干的邹完成签到,获得积分10
6秒前
善学以致用应助艾原采纳,获得10
6秒前
科研通AI6应助任成艳采纳,获得10
6秒前
岳拔萃发布了新的文献求助10
7秒前
茉莉完成签到,获得积分10
7秒前
7秒前
白雪阁发布了新的文献求助10
8秒前
8秒前
Kyrie完成签到,获得积分10
8秒前
卞珂完成签到,获得积分10
9秒前
holiday发布了新的文献求助20
9秒前
不想做实验完成签到,获得积分10
9秒前
9秒前
科研通AI6应助笑点低的悒采纳,获得10
10秒前
10秒前
豆沙包完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
张兰兰发布了新的文献求助10
12秒前
Min完成签到,获得积分10
13秒前
13秒前
思哲范发布了新的文献求助10
14秒前
Yh_L发布了新的文献求助10
14秒前
时光发布了新的文献求助10
14秒前
英俊的铭应助NCNST-shi采纳,获得10
15秒前
田小胖完成签到,获得积分10
15秒前
15秒前
Meteor636完成签到 ,获得积分10
16秒前
接两块钱发布了新的文献求助10
16秒前
123456qqqq完成签到,获得积分10
16秒前
福尔摩琪发布了新的文献求助10
16秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300