计算机科学
身份(音乐)
水准点(测量)
人工智能
目标检测
基础(线性代数)
模式识别(心理学)
计算机视觉
稳健性(进化)
对象(语法)
和声搜索
数据挖掘
数学
基因
物理
生物化学
化学
地理
声学
大地测量学
几何学
作者
Yuhang He,Xing Wei,Xiaopeng Hong,Wei Ke,Yihong Gong
出处
期刊:IEEE transactions on image processing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:31: 2201-2215
被引量:23
标识
DOI:10.1109/tip.2022.3154286
摘要
The data association problem of multi-object tracking (MOT) aims to assign IDentity (ID) labels to detections and infer a complete trajectory for each target. Most existing methods assume that each detection corresponds to a unique target and thus cannot handle situations when multiple targets occur in a single detection due to detection failure in crowded scenes. To relax this strong assumption for practical applications, we formulate the MOT as a Maximizing An Identity-Quantity Posterior (MAIQP) problem on the basis of associating each detection with an identity and a quantity characteristic and then provide solutions to tackle two key problems arising. Firstly, a local target quantification module is introduced to count the number of targets within one detection. Secondly, we propose an identity-quantity harmony mechanism to reconcile the two characteristics. On this basis, we develop a novel Identity-Quantity HArmonic Tracking (IQHAT) framework that allows assigning multiple ID labels to detections containing several targets. Through extensive experimental evaluations on five benchmark datasets, we demonstrate the superiority of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI