The Biological Meaning of Radiomic Features

医学 意义(存在) 医学物理学 认识论 哲学
作者
Michal R. Tomaszewski,Robert J. Gillies
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (3): 505-516 被引量:325
标识
DOI:10.1148/radiol.2021202553
摘要

Radiomic analysis offers a powerful tool for the extraction of clinically relevant information from radiologic imaging. Radiomics can be used to predict patient outcome through automated high-throughput feature extraction, using large training cohorts to elucidate subtle relationships between image characteristics and disease status. However powerful, the data-driven nature of radiomics inherently offers no insight into the biological underpinnings of the observed relationships. Early radiomics work was dominated by analysis of semantic, radiologist-defined features and carried qualitative real-world meaning. Following the rapid developments and popularity of machine learning approaches, the field moved quickly toward high-throughput agnostic analyses, resulting in increasingly large feature sets. This trend took the focus toward an increase in predictive power and further away from a biological understanding of the findings. Such a disconnect between predictor model and biological meaning will inherently limit broad clinical translation. Efforts to reintroduce biological meaning into radiomics are gaining traction in the field with distinct emerging approaches available, including genomic correlates, local microscopic pathologic image textures, and macroscopic histopathologic marker expression. These methods are presented in this review, and their significance is discussed. The authors predict that following the increasing pressure for robust radiomics, biological validation will become a standard practice in the field, thus further cementing the role of the method in clinical decision making. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on February 10, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Uuchandesu应助背后的小白菜采纳,获得10
1秒前
原子完成签到,获得积分10
1秒前
2秒前
月光入梦完成签到 ,获得积分10
2秒前
suiyi完成签到,获得积分10
2秒前
hkh发布了新的文献求助10
2秒前
sunflowers发布了新的文献求助20
3秒前
jianjiao完成签到,获得积分10
3秒前
茶多酚完成签到,获得积分10
4秒前
lu完成签到,获得积分10
4秒前
古琴残梦发布了新的文献求助10
5秒前
lxy发布了新的文献求助10
6秒前
Shawn完成签到,获得积分10
9秒前
12秒前
12秒前
vivianzhang完成签到,获得积分10
13秒前
xiaoz完成签到,获得积分10
19秒前
银杏发布了新的文献求助20
20秒前
21秒前
活力寄凡完成签到,获得积分10
25秒前
曾经饼干发布了新的文献求助10
25秒前
26秒前
丘比特应助Echo采纳,获得10
26秒前
27秒前
kingripple发布了新的文献求助10
28秒前
小小狗完成签到,获得积分10
28秒前
30秒前
Rita应助Tzzl0226采纳,获得10
31秒前
一一完成签到 ,获得积分10
32秒前
研友_LpvQlZ完成签到,获得积分10
33秒前
陈莹发布了新的文献求助10
33秒前
33秒前
36秒前
毓香谷的春天完成签到 ,获得积分0
36秒前
mss12138完成签到,获得积分10
36秒前
37秒前
voifhpg发布了新的文献求助10
37秒前
39秒前
陈莹完成签到,获得积分20
42秒前
Echo发布了新的文献求助10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774441
求助须知:如何正确求助?哪些是违规求助? 3320155
关于积分的说明 10198712
捐赠科研通 3034786
什么是DOI,文献DOI怎么找? 1665211
邀请新用户注册赠送积分活动 796703
科研通“疑难数据库(出版商)”最低求助积分说明 757552