已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The Biological Meaning of Radiomic Features

医学 意义(存在) 医学物理学 认识论 哲学
作者
Michal R. Tomaszewski,Robert J. Gillies
出处
期刊:Radiology [Radiological Society of North America]
卷期号:298 (3): 505-516 被引量:325
标识
DOI:10.1148/radiol.2021202553
摘要

Radiomic analysis offers a powerful tool for the extraction of clinically relevant information from radiologic imaging. Radiomics can be used to predict patient outcome through automated high-throughput feature extraction, using large training cohorts to elucidate subtle relationships between image characteristics and disease status. However powerful, the data-driven nature of radiomics inherently offers no insight into the biological underpinnings of the observed relationships. Early radiomics work was dominated by analysis of semantic, radiologist-defined features and carried qualitative real-world meaning. Following the rapid developments and popularity of machine learning approaches, the field moved quickly toward high-throughput agnostic analyses, resulting in increasingly large feature sets. This trend took the focus toward an increase in predictive power and further away from a biological understanding of the findings. Such a disconnect between predictor model and biological meaning will inherently limit broad clinical translation. Efforts to reintroduce biological meaning into radiomics are gaining traction in the field with distinct emerging approaches available, including genomic correlates, local microscopic pathologic image textures, and macroscopic histopathologic marker expression. These methods are presented in this review, and their significance is discussed. The authors predict that following the increasing pressure for robust radiomics, biological validation will become a standard practice in the field, thus further cementing the role of the method in clinical decision making. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on February 10, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋子骞完成签到 ,获得积分10
1秒前
sssss发布了新的文献求助30
2秒前
我是老大应助yayazz采纳,获得10
3秒前
周一一完成签到 ,获得积分10
4秒前
六月初八夜完成签到,获得积分10
6秒前
Tao完成签到,获得积分10
11秒前
怕黑的小凝完成签到 ,获得积分10
18秒前
18秒前
可靠白梅关注了科研通微信公众号
18秒前
yayazz发布了新的文献求助10
21秒前
lumen完成签到 ,获得积分10
22秒前
奔跑西木完成签到 ,获得积分10
22秒前
丁元英完成签到,获得积分10
25秒前
wang完成签到 ,获得积分10
26秒前
李东东完成签到 ,获得积分10
27秒前
共享精神应助动听书雁采纳,获得10
27秒前
李健应助keep1997采纳,获得10
34秒前
ZK完成签到,获得积分10
37秒前
akamanuo发布了新的文献求助10
39秒前
Hello应助胖崽胖崽采纳,获得10
40秒前
45秒前
48秒前
yayazz完成签到,获得积分10
49秒前
jeff完成签到,获得积分10
50秒前
keep1997发布了新的文献求助10
50秒前
LuoYR@SZU发布了新的文献求助10
50秒前
动听书雁完成签到,获得积分10
54秒前
Akim应助微笑的冥幽采纳,获得10
54秒前
59秒前
珊瑚蛇关注了科研通微信公众号
1分钟前
1234完成签到 ,获得积分10
1分钟前
丰富曼青完成签到,获得积分10
1分钟前
CodeCraft应助怕孤独的鞋垫采纳,获得10
1分钟前
义气幼珊完成签到 ,获得积分10
1分钟前
1分钟前
阿飞完成签到,获得积分10
1分钟前
bkagyin应助Sanqainli采纳,获得10
1分钟前
欣慰问凝发布了新的文献求助10
1分钟前
夏末完成签到 ,获得积分10
1分钟前
DaisyChan完成签到 ,获得积分10
1分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790324
关于积分的说明 7795000
捐赠科研通 2446805
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626171
版权声明 601141