电催化剂
原子轨道
纳米颗粒
镍
法拉第效率
催化作用
材料科学
电子
硫化镍
钆
化学
炭黑
碳纤维
氢
无机化学
纳米技术
电化学
物理化学
电极
冶金
有机化学
天然橡胶
复合材料
物理
复合数
量子力学
生物化学
作者
Liu Wei-qi,Peiyao Bai,Shilin Wei,Jing Wang,Lang Xu
标识
DOI:10.1002/anie.202201166
摘要
Generally, in terms of electrocatalytic CO2 reduction, single-atom catalysts show high selectivities yet low current densities whereas conventional nanoparticle catalysts exhibit relatively high current densities but low selectivities. This work combines the advantages of the two classes of catalysts by constructing a Ni-Gd-N-doped carbon black electrocatalyst within which NiI active sites are exposed outside the carbon layers and Ni nanoparticles are encapsulated inside the carbon layers. The Gd atoms can not only influence the local electron densities of Ni 3d orbitals, thus strengthening the electronic activity, but also tailor the sizes of the Ni nanoparticles, thereby minimizing the activity toward hydrogen evolution. Accordingly, this electrocatalyst yields both a high CO faradaic efficiency (97 %) and a large current density (308 mA cm-2 ), alongside an outstanding stability (100 h).
科研通智能强力驱动
Strongly Powered by AbleSci AI