A prognostic model constructed by CTHRC1 and LRFN4 in Stomach adenocarcinoma by Bioinformatics Analysis

医学 内科学 列线图 肿瘤科 癌症 腺癌 癌症研究 转移 免疫组织化学 生存分析
作者
Songling Han,Wei Zhu,Qijie Guan,Zhuoheng Zhong,Ruoke Zhao,Hangming Xiong,Hongwei Fu,Xingjiang Hu,Jingkui Tian
标识
DOI:10.21203/rs.3.rs-52939/v1
摘要

Abstract Background Stomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study specifically aimed to identify potential biomarkers and reveal the underlying molecular mechanisms. Methods Gene expression profiles microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The ‘limma’ R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The data of STAD cases with both RNA sequencing and clinical information of The Cancer Genome Atlas (TCGA) were obtained from Genomic Data Commons (GDC) data portal. Survival curves were analyzed by the Kaplan-Meier method, univariate Cox regression analysis and multivariate Cox regression were performed using ‘survival’ package. CIBERSORT algorithm used approach to characterize the 22 human immune cell composition. Gene expression profiles microarray data and clinical information were downloaded from GEO database to validate prognostic model. Results Three public datasets including 90 STAD patients and 43 healthy controls were used and 44 genes were differentially expressed in all three datasets. These genes were primarily implicated in biological processes including cell adhesion, wound healing and extracellular matrix organization. Seven out of 44 genes showed significant survival differences based on their expression differences. CTHRC1 and LRFN4 were eventually used to constructed risk score and prognostic model by univariate Cox regression and stepwise multivariate Cox regression in The Cancer Genome Atlas (TCGA)-STAD dataset. The group having high risk scores and the group having low risk scores had significant differences in the infiltration level of multiple immune cells including CD4 memory resting T cells, M2 macrophages, memory B cells, resting dendritic cells, eosinophils, and gamma delta T cells. Multivariate Cox regression analyses indicated that the risk score was an independent predictor after adjusting for age, sex, and tumor stage. At last, the model was verified and evaluated by another independent dataset and showed a good classification effect. Conclusions The present study constructed the prognostic model by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which may provide clinical guidance and potential therapeutic targets for STAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JX发布了新的文献求助10
刚刚
2220895发布了新的文献求助20
1秒前
yar给sunoopp的求助进行了留言
1秒前
gjww完成签到,获得积分0
2秒前
余三浪完成签到,获得积分10
2秒前
所所应助科研白小白采纳,获得10
2秒前
2秒前
可可完成签到 ,获得积分10
4秒前
淡然子轩完成签到,获得积分10
4秒前
5秒前
xiangpimei完成签到 ,获得积分10
5秒前
妖孽的二狗完成签到 ,获得积分10
5秒前
小稻草人完成签到,获得积分20
6秒前
咕咕发布了新的文献求助10
6秒前
Star1983完成签到,获得积分10
9秒前
10秒前
丰丰发布了新的文献求助10
10秒前
10秒前
义气小白菜完成签到 ,获得积分10
11秒前
CodeCraft应助慧慧采纳,获得10
11秒前
YU DIAN完成签到,获得积分10
12秒前
qf77发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
藤椒辣鱼应助虾滑采纳,获得10
16秒前
大模型应助洋子采纳,获得10
17秒前
吴青完成签到,获得积分10
17秒前
副本完成签到 ,获得积分10
18秒前
19秒前
shoudonglin完成签到,获得积分10
19秒前
李宝刚发布了新的文献求助10
20秒前
认真柠檬发布了新的文献求助10
21秒前
JX完成签到,获得积分10
21秒前
22秒前
22秒前
SS完成签到,获得积分20
23秒前
刘忙发布了新的文献求助10
23秒前
无心的紫菜完成签到,获得积分10
24秒前
36456657应助豆花哥采纳,获得50
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460768
求助须知:如何正确求助?哪些是违规求助? 3054744
关于积分的说明 9044358
捐赠科研通 2744477
什么是DOI,文献DOI怎么找? 1505584
科研通“疑难数据库(出版商)”最低求助积分说明 695743
邀请新用户注册赠送积分活动 695063