EZH2型
PRC2
交易激励
癌变
生物
心理压抑
细胞生物学
癌症研究
基因
组蛋白
遗传学
转录因子
基因表达
作者
Jun Wang,Xufen Yu,Weida Gong,Xijuan Liu,Kwang‐Su Park,Anqi Ma,Yi‐Hsuan Tsai,Yudao Shen,Takashi Onikubo,Wen‐Chieh Pi,David F. Allison,Jing Liu,Wei‐Yi Chen,Ling Cai,Robert G. Roeder,Jian Jin,Gang Greg Wang
标识
DOI:10.1038/s41556-022-00850-x
摘要
Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2–PRC2) and noncanonical (EZH2-TAD–cMyc–coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2–PRC2 and noncanonical EZH2–cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers. Wang et al. reveal a noncanonical mechanism for EZH2 in binding the oncoprotein cMyc to promote tumorigenesis, and develop a small-molecule degrader, MS177, to target both canonical and noncanonical functions of EZH2 to suppress tumour growth.
科研通智能强力驱动
Strongly Powered by AbleSci AI