Using artificial intelligence methods for systematic review in health sciences: A systematic review

系统回顾 计算机科学 人工智能 数据提取 梅德林 人工智能应用 数据科学 机器学习 政治学 法学
作者
Aymeric Blaizot,Sajesh K. Veettil,Pantakarn Saidoung,Carlos Francisco Moreno‐García,Nirmalie Wiratunga,Magaly Aceves‐Martins,Nai Ming Lai,Nathorn Chaiyakunapruk
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:13 (3): 353-362 被引量:63
标识
DOI:10.1002/jrsm.1553
摘要

The exponential increase in published articles makes a thorough and expedient review of literature increasingly challenging. This review delineated automated tools and platforms that employ artificial intelligence (AI) approaches and evaluated the reported benefits and challenges in using such methods. A search was conducted in 4 databases (Medline, Embase, CDSR, and Epistemonikos) up to April 2021 for systematic reviews and other related reviews implementing AI methods. To be included, the review must use any form of AI method, including machine learning, deep learning, neural network, or any other applications used to enable the full or semi-autonomous performance of one or more stages in the development of evidence synthesis. Twelve reviews were included, using nine different tools to implement 15 different AI methods. Eleven methods were used in the screening stages of the review (73%). The rest were divided: two in data extraction (13%) and two in risk of bias assessment (13%). The ambiguous benefits of the data extractions, combined with the reported advantages from 10 reviews, indicating that AI platforms have taken hold with varying success in evidence synthesis. However, the results are qualified by the reliance on the self-reporting of the review authors. Extensive human validation still appears required at this stage in implementing AI methods, though further evaluation is required to define the overall contribution of such platforms in enhancing efficiency and quality in evidence synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
壮观复天完成签到,获得积分10
刚刚
小洁完成签到 ,获得积分10
1秒前
郎治宇发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
可爱的函函应助hbsun采纳,获得100
3秒前
笑笑丶不爱笑完成签到,获得积分10
3秒前
dr_luo完成签到,获得积分20
3秒前
路遥发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
Owen应助Hosea采纳,获得10
4秒前
陈居居发布了新的文献求助10
5秒前
吖吖草发布了新的文献求助10
5秒前
可靠的书桃应助小杨采纳,获得10
5秒前
zhaoyue发布了新的文献求助10
5秒前
callous发布了新的文献求助10
6秒前
Jasper应助游走的太阳采纳,获得10
6秒前
dr_luo发布了新的文献求助10
6秒前
7秒前
7秒前
等闲月完成签到 ,获得积分10
7秒前
8秒前
Jeffry发布了新的文献求助10
8秒前
明亮的幻竹应助小明采纳,获得10
9秒前
9秒前
9秒前
9秒前
董竹君发布了新的文献求助10
9秒前
wzy完成签到,获得积分10
10秒前
10秒前
颖宝老公完成签到,获得积分10
11秒前
九日完成签到,获得积分10
12秒前
星辰大海应助陈居居采纳,获得10
12秒前
rr发布了新的文献求助10
12秒前
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160291
求助须知:如何正确求助?哪些是违规求助? 2811389
关于积分的说明 7892168
捐赠科研通 2470409
什么是DOI,文献DOI怎么找? 1315568
科研通“疑难数据库(出版商)”最低求助积分说明 630869
版权声明 602038