Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

一般化 计算机科学 水准点(测量) 集合(抽象数据类型) 人工智能 编码(集合论) 序列(生物学) 钥匙(锁) 机器学习 理论计算机科学 程序设计语言 数学 生物 遗传学 数学分析 计算机安全 大地测量学 地理
作者
Denny Zhou,Nathanael Schärli,Le Hou,Jason Lee,Nathan Scales,Xuezhi Wang,Dale Schuurmans,Claire Cui,Olivier Bousquet,Quoc V. Le,Ed H.
出处
期刊:Cornell University - arXiv 被引量:177
标识
DOI:10.48550/arxiv.2205.10625
摘要

Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张小胖完成签到 ,获得积分10
刚刚
1秒前
赘婿应助大學朝陽采纳,获得20
1秒前
昔年若许发布了新的文献求助10
3秒前
张小胖关注了科研通微信公众号
4秒前
炎燚发布了新的文献求助10
5秒前
7秒前
dfyhdd完成签到,获得积分10
7秒前
不许焦绿o发布了新的文献求助10
8秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
不懈奋进应助科研通管家采纳,获得30
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
快乐书桃完成签到,获得积分20
10秒前
Sunshine完成签到,获得积分0
11秒前
11秒前
Ava应助weing采纳,获得10
13秒前
善学以致用应助tt采纳,获得10
13秒前
13秒前
迷路冬卉完成签到,获得积分10
14秒前
SY完成签到,获得积分10
15秒前
16秒前
英姑应助kk采纳,获得10
17秒前
大个应助奋斗的雅柔采纳,获得20
18秒前
19秒前
mmyhn发布了新的文献求助10
20秒前
杨一发布了新的文献求助10
20秒前
21秒前
明理一兰发布了新的文献求助10
23秒前
yggmdggr完成签到,获得积分10
24秒前
无聊的灵松完成签到 ,获得积分10
26秒前
26秒前
26秒前
无奈滑板完成签到,获得积分10
28秒前
研友_gnv0b8完成签到,获得积分10
28秒前
dfhbdfhfhfgsd发布了新的文献求助10
28秒前
冷静的胜发布了新的文献求助10
28秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244106
求助须知:如何正确求助?哪些是违规求助? 2887900
关于积分的说明 8250281
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625975