赤眼蜂科
生物
球孢白僵菌
球孢菌
分生孢子
赤眼蜂
寄生蜂
生物病虫害防治
园艺
植物
包虫科
膜翅目
作者
Yanan Wu,Haibo Fang,Xiaoxia Liu,J.P. Michaud,Haoyang Xu,Zhihua Zhao,Songdou Zhang,Zhen Li
摘要
The entomopathogenic fungus Beauveria bassiana and the egg parasitoid Trichogramma dendrolimi can both contribute to biological control of the global fruit borer Grapholita molesta. To derive insights for optimizing their combined application in augmentation programs, we assayed fungal pathogenicity to both G. molesta (eggs, larvae and adults) and adult parasitoids, and assessed wasp acquisition and transmission of fungal spores following their emergence from B. bassiana-treated host eggs.Concentrations of 108 conidia mL-1 of B. bassiana and higher caused virtually complete mortality of G. molesta larvae, but less than 30% mortality of eggs, and female moths surviving treatments had reduced fecundity. More than 80% of adult T. dendrolimi survived B. bassiana treatments of 107 conidia mL-1 , and more than 60% survived 109 conidia mL-1 , with surviving females achieving reproductive success equivalent to controls. Parasitoid females preferred healthy eggs over B. bassiana-infected ones in choice tests; wasps emerging from treated eggs carried about 104 conidia each and contributed an additional 11% host mortality in trials combining both agents.Our results indicate that combined applications of B. bassiana and T. dendrolimi can have complimentary impacts on G. molesta, the wasps compensating for low fungal pathogenicity to eggs and their progeny potentially aiding in subsequent disease transmission. Although foraging wasps tended to avoid infected eggs, negative interactions between the two agents might be further mitigated by timing B. bassiana applications from late instar larva to early moth stage, and T. dendrolimi releases several days later to coincide with peak oviposition periods. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI