The Ir–OOOO–Ir transition state and the mechanism of the oxygen evolution reaction on IrO2(110)

催化作用 氧气 电催化剂 氧化物 化学 过渡金属 析氧 光化学 化学物理 物理化学 分子 有机化学 电极 电化学 生物化学
作者
Tobias Binninger,Marie‐Liesse Doublet
出处
期刊:Energy and Environmental Science [The Royal Society of Chemistry]
卷期号:15 (6): 2519-2528 被引量:75
标识
DOI:10.1039/d2ee00158f
摘要

Carefully assessing the energetics along the pathway of the oxygen evolution reaction (OER), our computational study reveals that the "classical" OER mechanism on the (110) surface of iridium dioxide (IrO2) must be reconsidered. We find that the OER follows a bi-nuclear mechanism with adjacent top surface oxygen atoms as fixed adsorption sites, whereas the iridium atoms underneath play an indirect role and maintain their saturated 6-fold oxygen coordination at all stages of the reaction. The oxygen molecule is formed, via an Ir-OOOO-Ir transition state, by association of the outer oxygen atoms of two adjacent Ir-OO surface entities, leaving two intact Ir-O entities at the surface behind. This is drastically different from the commonly considered mono-nuclear mechanism where the O2 molecule evolves by splitting of the Ir-O bond in an Ir-OO entity. We regard the rather weak reducibility of crystalline IrO2 as the reason for favoring the novel pathway, which allows the Ir-O bonds to remain stable and explains the outstanding stability of IrO2 under OER conditions. The establishment of surface oxygen atoms as fixed electrocatalytically active sites on a transition-metal oxide represents a paradigm shift for the understanding of water oxidation electrocatalysis, and it reconciles the theoretical understanding of the OER mechanism on iridium oxide with recently reported experimental results from operando X-ray spectroscopy. The novel mechanism provides an efficient OER pathway on a weakly reducible oxide, defining a new strategy towards the design of advanced OER catalysts with combined activity and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you秀的哈密瓜完成签到,获得积分10
1秒前
内向莛发布了新的文献求助10
1秒前
2秒前
3秒前
在水一方应助37927采纳,获得10
5秒前
Grool发布了新的文献求助10
5秒前
5秒前
6秒前
Lucas应助Panda采纳,获得10
7秒前
妮妮完成签到,获得积分10
8秒前
天天快乐应助晚晚采纳,获得10
8秒前
YSY完成签到,获得积分10
10秒前
liux完成签到 ,获得积分20
10秒前
善学以致用应助旷意采纳,获得10
10秒前
10秒前
丑123发布了新的文献求助10
10秒前
LETHE完成签到,获得积分10
11秒前
在水一方应助duan采纳,获得10
13秒前
wanci应助奥特曼采纳,获得10
13秒前
华仔应助舒适香露采纳,获得10
15秒前
15秒前
SYLH应助星星的梦采纳,获得10
16秒前
科研通AI2S应助内向莛采纳,获得10
16秒前
Mia完成签到,获得积分10
17秒前
17秒前
大个应助9202211125采纳,获得10
18秒前
18秒前
18秒前
demo应助物理大神采纳,获得10
21秒前
22秒前
22秒前
xuan完成签到,获得积分10
22秒前
吴七七发布了新的文献求助10
23秒前
24秒前
24秒前
风铃发布了新的文献求助10
24秒前
24秒前
25秒前
SYLH应助简单冰淇淋采纳,获得10
26秒前
斯文的紫槐完成签到,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466055
求助须知:如何正确求助?哪些是违规求助? 3059037
关于积分的说明 9064416
捐赠科研通 2749410
什么是DOI,文献DOI怎么找? 1508522
科研通“疑难数据库(出版商)”最低求助积分说明 696949
邀请新用户注册赠送积分活动 696680