Heterogeneous structural responses recovery based on multi-modal deep learning

缺少数据 计算机科学 插补(统计学) 数据挖掘 均方误差 情态动词 水准点(测量) 传感器融合 人工智能 模式识别(心理学) 机器学习 统计 数学 化学 大地测量学 高分子化学 地理
作者
Bowen Du,Liyu Wu,Leilei Sun,Fei Xu,Linchao Li
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (2): 799-813 被引量:7
标识
DOI:10.1177/14759217221094499
摘要

For structural health monitoring, a complete dataset is important for further analysis such as modal identification and risk early warning. Unfortunately, the missing data normally exist in current database due to sensor failures, transmission system interruption, and hardware malfunctions. Currently, most of the studies just deleted the dataset containing missing data or using mean values as imputation which could wrongly reflect the characteristics changes of the structure. The present study therefore develops a heterogeneous structural response recovery method based on multi-modal fusion auto-encoder which can consider temporal correlations and spatial correlations and correlations between heterogeneous structural responses simultaneously. Moreover, a parallel optimization method is proposed to optimize the parameters of the deep fusion networks. A dataset containing about 3 months and two input attributes is collected from a bridge and utilized for training and testing the proposed method and some benchmark methods. Statistical scores including root mean square error (RSME), mean absolute error (MAE), and mean relative error (MRE) are applied to evaluate the performance of the implemented models, respectively. Results show that the proposed method achieve the best imputation performance under different missing scenarios. Furthermore, the proposed method can achieve better performance when the missing rate is high. The results suggest that the consideration between heterogeneous structural responses is critical for missing data recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四叶草发布了新的文献求助50
刚刚
无花果应助ppppp采纳,获得10
1秒前
1秒前
刘运丽发布了新的文献求助10
1秒前
DX发布了新的文献求助10
1秒前
1秒前
小余同学发布了新的文献求助10
1秒前
2秒前
俭朴的三德完成签到,获得积分10
2秒前
可爱的函函应助虾仁采纳,获得10
3秒前
4秒前
4秒前
雄图完成签到,获得积分10
4秒前
CAOHOU举报小夫同学求助涉嫌违规
5秒前
5秒前
5秒前
852应助哈哈哈哈采纳,获得10
5秒前
xc41992发布了新的文献求助10
5秒前
研究生发布了新的文献求助10
5秒前
思源应助ccc采纳,获得20
5秒前
和谐续发布了新的文献求助10
6秒前
研友_851KE8发布了新的文献求助10
6秒前
superbanggg发布了新的文献求助30
6秒前
DX完成签到,获得积分10
6秒前
Jasper应助boyue采纳,获得10
7秒前
yookia应助小光采纳,获得10
7秒前
我是老大应助yangyangyang采纳,获得10
7秒前
思源应助微笑的傲安采纳,获得10
8秒前
zyx发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
13秒前
14秒前
YHT完成签到,获得积分10
14秒前
ppppp发布了新的文献求助10
14秒前
gaoyunfeng完成签到,获得积分10
14秒前
leyu完成签到,获得积分10
15秒前
霸气向日葵完成签到,获得积分10
16秒前
和谐谷蕊完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600