Effects of stand factors on tree growth of Chinese fir in the subtropics of China depends on climate conditions from predictions of a deep learning algorithm: A long-term spacing trial

杉木 断面积 降水 竞赛(生物学) 气候变化 亚热带 随机森林 环境科学 树(集合论) 大气科学 数学 气候学 生态学 自然地理学 地理 生物 气象学 计算机科学 植物 人工智能 数学分析 地质学
作者
Zhen Wang,Xiongqing Zhang,Jianguo Zhang,Sophan Chhin
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:520: 120363-120363 被引量:7
标识
DOI:10.1016/j.foreco.2022.120363
摘要

Stand and climate related variables are the main driving forces controlling individual tree growth. Two machine learning algorithms called deep learning and random forest were used to explore how annual diameter growth varied with stand and climatic variables. Data was obtained from a long-term spacing trail of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in four provinces of southern China. Results from model comparisons showed the deep learning model with 8 hidden layers and 90 neurons in each hidden layer achieved the best performance, and the RF model ranked 4th among 9 selected models. In addition, sensitivity analysis showed that individual tree growth increased with an increase in Gini coefficient, while growth decreased with an increase in stand age (A) and the basal area of larger trees (BAL). The relationships between diameter growth and summer mean maximum temperature (SMMT), as well as winter mean minimum temperature (WMMT) and annual precipitation (AP) were not constant, which depended on the range of values of each climate factor. BAL had the greatest influence on diameter growth among all the variables. From an interaction analysis, we found that climate factors exacerbated the negative effects of competition on growth. Climate change promoted the growth of younger trees but restrained the growth of older trees. With climate variables considered, tree growth under high and middle stand structural heterogeneity were similar, and observably higher than that with low stand structural heterogeneity. Positive influences of climate tended to promote tree growth under lower competition and older individuals were more vulnerable to WMMT changes. Our findings enhance our understanding of the mechanisms driving individual Chinese fir growth in southern China in the face of future climate uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
突突突完成签到,获得积分10
2秒前
赘婿应助莉亚采纳,获得30
2秒前
3秒前
3秒前
4秒前
陈思完成签到,获得积分10
4秒前
丘比特应助m30采纳,获得10
5秒前
鉨汏闫完成签到,获得积分10
5秒前
6秒前
wanci应助zzz采纳,获得10
6秒前
蜕变完成签到,获得积分10
8秒前
I1waml完成签到 ,获得积分10
9秒前
johnson7777完成签到,获得积分10
9秒前
宝宝完成签到,获得积分10
10秒前
可爱的函函应助流年采纳,获得10
10秒前
11秒前
强健的雪完成签到,获得积分10
11秒前
小王同学完成签到 ,获得积分10
12秒前
12秒前
无花果应助lanlan采纳,获得10
12秒前
如约而至发布了新的文献求助10
12秒前
zoie0809完成签到,获得积分10
13秒前
13秒前
13秒前
johnson7777发布了新的文献求助10
13秒前
李健应助Hanguo采纳,获得10
13秒前
窝的小卷毛完成签到,获得积分10
13秒前
14秒前
如意新晴完成签到,获得积分10
14秒前
bkagyin应助最卷的卷心菜采纳,获得10
14秒前
搜集达人应助正直从阳采纳,获得10
14秒前
弥叶十厥发布了新的文献求助10
15秒前
hao完成签到,获得积分10
15秒前
善学以致用应助mm采纳,获得10
15秒前
16秒前
猪猪hero发布了新的文献求助10
16秒前
17秒前
Shibssjd发布了新的文献求助10
17秒前
明亮的元柏完成签到,获得积分10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408656
求助须知:如何正确求助?哪些是违规求助? 3012730
关于积分的说明 8855601
捐赠科研通 2699976
什么是DOI,文献DOI怎么找? 1480215
科研通“疑难数据库(出版商)”最低求助积分说明 684219
邀请新用户注册赠送积分活动 678543