亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating crowd density with edge intelligence based on lightweight convolutional neural networks

计算机科学 卷积神经网络 GSM演进的增强数据速率 人工智能 机器学习 人工神经网络 模式识别(心理学)
作者
Shuo Wang,Ziyuan Pu,Qianmu Li,Yinhai Wang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:206: 117823-117823 被引量:25
标识
DOI:10.1016/j.eswa.2022.117823
摘要

• Computing on edge end improves the efficiency and reliability of data analysis. • A lightweight CNN model is efficient for real-time crowd density estimation on edge. • Better crowd density inference speed with a slight increase in estimation accuracy. • Equip the model in an IoT device to monitor the crowd density in a Subway Station. Crowd stampedes and incidents are critical threats to public security that have caused countless deaths during the past few decades. To avoid crowd stampedes, real-time crowd density estimation can help monitor crowd movements, and thus support a timely evacuation strategy development. In previous studies, scholars and engineers developed multiple video-based crowd density estimation algorithms based on deep neural networks. The excessive computational complexity of deep learning algorithms exacerbated the algorithm’s efficiency, causing unacceptable real-time performance. In the Internet of Things era, deploying the crowd density estimation task with edge computing is an advanced strategy to maintain the real-time performance of the entire system. Considering the limited computational resources on the edge devices, deep learning-based crowd density estimation algorithms normally cannot be handled. To fulfill the deployment on the edge device, the algorithms need to be optimized with a smaller model size. Therefore, this paper proposes a lightweight Convolutional Neural Networks (CNN) based crowd density estimation model by combining the modified MobileNetv2 and the dilated convolution. Public crowd image data sets are used to conduct experiments for evaluating the performance of the proposed algorithm in terms of accuracy and inference speed. The results show that our model achieves much better inference speed accompanied by a slight increase in accuracy. The proposed method of this study can enhance the performance of the crowd monitoring system, and therefore help avoid crowd stampedes and incidents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助饼干小子采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
32秒前
44秒前
49秒前
1分钟前
zho发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
junkook完成签到 ,获得积分10
1分钟前
信封完成签到 ,获得积分10
1分钟前
1分钟前
zho发布了新的文献求助10
1分钟前
从容映易完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Oracle完成签到 ,获得积分10
2分钟前
2分钟前
囚徒发布了新的文献求助10
2分钟前
2分钟前
苗条丹南完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
友好寻真发布了新的文献求助10
3分钟前
SciGPT应助Zhouyang采纳,获得10
3分钟前
大个应助fei采纳,获得10
3分钟前
3分钟前
zho发布了新的文献求助10
3分钟前
深情安青应助友好寻真采纳,获得10
3分钟前
fuueer完成签到 ,获得积分10
3分钟前
3分钟前
Pikachu完成签到,获得积分10
3分钟前
饼干小子发布了新的文献求助10
3分钟前
韩韩完成签到 ,获得积分10
3分钟前
大模型应助饼干小子采纳,获得10
3分钟前
3分钟前
科目三应助想游泳的鹰采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
无花果应助Pikachu采纳,获得20
4分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000764
关于积分的说明 8793621
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471916
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313