Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data

计算机科学 残余物 班级(哲学) 传输(计算) 领域(数学分析) 人工智能 断层(地质) 数据挖掘 模式识别(心理学) 机器学习 算法 并行计算 数学 地质学 数学分析 地震学
作者
Xuan Liu,Jinglong Chen,Kaiyu Zhang,Shen Liu,Shuilong He,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109272-109272 被引量:25
标识
DOI:10.1016/j.knosys.2022.109272
摘要

Intelligent fault diagnosis methods are significant to mitigate the dependency on expert knowledge and the cost. For the limited faulty data and variational working conditions of real scenarios, cross-domain diagnosis using existing diagnosis models is widely discussed. Especially, methods based on cross-domain transfer learning show great potentiality. However, the class imbalanced data of actual working conditions make it difficult to learn the actual fault feature distribution. To this end, a transfer residual network augmented with explicit weight self-assignment strategy based on meta data(TRN-EWM) is proposed. Specifically, we use a domain-shared ResNet to extract depth features of the data, which effectively avoid gradient disappearance and improve classification performance. Then, to lessen diagnosis difficulties in cross-domain and fully mine the actual feature distribution of the samples, a class imbalanced cross-domain transfer method is carried out. Ultimately, we creatively construct an explicit weight self-assignment strategy based on meta data for sample weight rebalancing, which prevents the dominance of major classes and the overfitting of minor classes. Two transfer experiments are conducted, and average cross-domain diagnosis accuracy of 99.60% is achieved by the proposed method, which shows the effectiveness in bearing fault diagnosis. • A novel cross-domain transfer fault diagnosis method for class imbalanced samples is proposed. • Fault feature extractor based on deep residual network is constructed to avoid gradient disappearance and improve the diagnosis performance. • Cross-domain transfer is carried out to reduce the degree of difficulty in diagnosis. • Explicit weight self-assignment strategy based on meta data is adopted to optimize the sample weighting process with class imbalance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YukiXu发布了新的文献求助10
刚刚
2秒前
思源应助曾经大地采纳,获得10
2秒前
醍醐不醒完成签到 ,获得积分10
2秒前
4秒前
6秒前
6秒前
科研通AI6应助panyubo采纳,获得10
6秒前
悠悠发布了新的文献求助20
7秒前
8秒前
LOTUS发布了新的文献求助10
10秒前
扎根完成签到,获得积分10
10秒前
柏不斜发布了新的文献求助10
11秒前
coollz完成签到,获得积分20
11秒前
11秒前
12秒前
12秒前
扎根发布了新的文献求助150
13秒前
乐in林发布了新的文献求助10
13秒前
玩命的小虾米完成签到,获得积分10
14秒前
junlin完成签到,获得积分10
15秒前
所所应助surain采纳,获得10
16秒前
AMM发布了新的文献求助10
16秒前
Tian发布了新的文献求助100
18秒前
18秒前
FashionBoy应助聪明海云采纳,获得10
20秒前
666发布了新的文献求助10
23秒前
TCMning发布了新的文献求助10
24秒前
24秒前
四玖玖完成签到,获得积分10
26秒前
酷波er应助xx采纳,获得10
28秒前
海斯泰因发布了新的文献求助10
29秒前
Daisy发布了新的文献求助10
29秒前
害怕的水之完成签到,获得积分10
30秒前
一生低首向东坡完成签到,获得积分20
30秒前
风吹麦田应助ljn采纳,获得50
30秒前
30秒前
深情的鞯发布了新的文献求助10
31秒前
heaven发布了新的文献求助10
31秒前
雨中小王应助懵懂的寻冬采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329