重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data

计算机科学 残余物 班级(哲学) 传输(计算) 领域(数学分析) 人工智能 断层(地质) 数据挖掘 模式识别(心理学) 机器学习 算法 并行计算 数学分析 数学 地震学 地质学
作者
Xuan Liu,Jinglong Chen,Kaiyu Zhang,Shen Liu,Shuilong He,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109272-109272 被引量:25
标识
DOI:10.1016/j.knosys.2022.109272
摘要

Intelligent fault diagnosis methods are significant to mitigate the dependency on expert knowledge and the cost. For the limited faulty data and variational working conditions of real scenarios, cross-domain diagnosis using existing diagnosis models is widely discussed. Especially, methods based on cross-domain transfer learning show great potentiality. However, the class imbalanced data of actual working conditions make it difficult to learn the actual fault feature distribution. To this end, a transfer residual network augmented with explicit weight self-assignment strategy based on meta data(TRN-EWM) is proposed. Specifically, we use a domain-shared ResNet to extract depth features of the data, which effectively avoid gradient disappearance and improve classification performance. Then, to lessen diagnosis difficulties in cross-domain and fully mine the actual feature distribution of the samples, a class imbalanced cross-domain transfer method is carried out. Ultimately, we creatively construct an explicit weight self-assignment strategy based on meta data for sample weight rebalancing, which prevents the dominance of major classes and the overfitting of minor classes. Two transfer experiments are conducted, and average cross-domain diagnosis accuracy of 99.60% is achieved by the proposed method, which shows the effectiveness in bearing fault diagnosis. • A novel cross-domain transfer fault diagnosis method for class imbalanced samples is proposed. • Fault feature extractor based on deep residual network is constructed to avoid gradient disappearance and improve the diagnosis performance. • Cross-domain transfer is carried out to reduce the degree of difficulty in diagnosis. • Explicit weight self-assignment strategy based on meta data is adopted to optimize the sample weighting process with class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex完成签到,获得积分10
1秒前
菜菜完成签到,获得积分10
1秒前
a111完成签到,获得积分10
1秒前
1秒前
2秒前
小宇子完成签到,获得积分20
2秒前
桐桐应助tsumugi采纳,获得10
2秒前
胡梅13完成签到,获得积分10
3秒前
淡淡的鸽子给淡淡的鸽子的求助进行了留言
3秒前
3秒前
Ostrichhhh发布了新的文献求助20
3秒前
研友_VZG7GZ应助烤布蕾采纳,获得10
3秒前
安安发布了新的文献求助30
3秒前
火星上如松完成签到 ,获得积分10
4秒前
浮游应助顺其自然_666888采纳,获得10
4秒前
未若从前i完成签到,获得积分10
6秒前
闪闪凡霜完成签到,获得积分10
6秒前
YINLI完成签到,获得积分20
6秒前
Alex发布了新的文献求助10
7秒前
8秒前
进击的大叔完成签到,获得积分10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
renshiq完成签到,获得积分10
10秒前
10秒前
小宇子发布了新的文献求助10
11秒前
大卷完成签到,获得积分10
11秒前
wanci应助柳橙采纳,获得10
11秒前
阿艺完成签到,获得积分10
12秒前
浮游应助sk采纳,获得10
13秒前
CHENHAHA完成签到,获得积分10
13秒前
13秒前
昨夜書完成签到 ,获得积分10
13秒前
cui发布了新的文献求助10
14秒前
小蘑菇应助ssn采纳,获得10
14秒前
宋虹发布了新的文献求助10
14秒前
luluturn发布了新的文献求助30
14秒前
充电宝应助tjxz2002采纳,获得10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467818
求助须知:如何正确求助?哪些是违规求助? 4571406
关于积分的说明 14330055
捐赠科研通 4497984
什么是DOI,文献DOI怎么找? 2464215
邀请新用户注册赠送积分活动 1452991
关于科研通互助平台的介绍 1427699