亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data

计算机科学 残余物 班级(哲学) 传输(计算) 领域(数学分析) 人工智能 断层(地质) 数据挖掘 模式识别(心理学) 机器学习 算法 并行计算 数学 地质学 数学分析 地震学
作者
Xuan Liu,Jinglong Chen,Kaiyu Zhang,Shen Liu,Shuilong He,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109272-109272 被引量:25
标识
DOI:10.1016/j.knosys.2022.109272
摘要

Intelligent fault diagnosis methods are significant to mitigate the dependency on expert knowledge and the cost. For the limited faulty data and variational working conditions of real scenarios, cross-domain diagnosis using existing diagnosis models is widely discussed. Especially, methods based on cross-domain transfer learning show great potentiality. However, the class imbalanced data of actual working conditions make it difficult to learn the actual fault feature distribution. To this end, a transfer residual network augmented with explicit weight self-assignment strategy based on meta data(TRN-EWM) is proposed. Specifically, we use a domain-shared ResNet to extract depth features of the data, which effectively avoid gradient disappearance and improve classification performance. Then, to lessen diagnosis difficulties in cross-domain and fully mine the actual feature distribution of the samples, a class imbalanced cross-domain transfer method is carried out. Ultimately, we creatively construct an explicit weight self-assignment strategy based on meta data for sample weight rebalancing, which prevents the dominance of major classes and the overfitting of minor classes. Two transfer experiments are conducted, and average cross-domain diagnosis accuracy of 99.60% is achieved by the proposed method, which shows the effectiveness in bearing fault diagnosis. • A novel cross-domain transfer fault diagnosis method for class imbalanced samples is proposed. • Fault feature extractor based on deep residual network is constructed to avoid gradient disappearance and improve the diagnosis performance. • Cross-domain transfer is carried out to reduce the degree of difficulty in diagnosis. • Explicit weight self-assignment strategy based on meta data is adopted to optimize the sample weighting process with class imbalance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ILS完成签到 ,获得积分10
20秒前
英姑应助科研通管家采纳,获得10
28秒前
AixLeft完成签到 ,获得积分10
29秒前
YHYHYH完成签到,获得积分10
32秒前
53秒前
hoinyes发布了新的文献求助10
57秒前
1分钟前
1分钟前
大个应助hoinyes采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
tree完成签到 ,获得积分10
2分钟前
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
3分钟前
梦幻征途完成签到,获得积分10
3分钟前
3分钟前
梦幻征途发布了新的文献求助10
3分钟前
qing_li完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
白熊完成签到 ,获得积分10
4分钟前
4分钟前
烟花应助zhb123采纳,获得10
4分钟前
5分钟前
zhb123发布了新的文献求助10
5分钟前
舒心聪展发布了新的文献求助10
5分钟前
zhb123完成签到,获得积分10
5分钟前
bkagyin应助贝加尔湖畔采纳,获得10
5分钟前
fdwang完成签到 ,获得积分10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得30
6分钟前
语物完成签到,获得积分10
6分钟前
水刃木完成签到,获得积分10
6分钟前
Zgrey完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681583
求助须知:如何正确求助?哪些是违规求助? 5010277
关于积分的说明 15175826
捐赠科研通 4841086
什么是DOI,文献DOI怎么找? 2594918
邀请新用户注册赠送积分活动 1547912
关于科研通互助平台的介绍 1505927