Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data

计算机科学 残余物 班级(哲学) 传输(计算) 领域(数学分析) 人工智能 断层(地质) 数据挖掘 模式识别(心理学) 机器学习 算法 并行计算 数学 地质学 数学分析 地震学
作者
Xuan Liu,Jinglong Chen,Kaiyu Zhang,Shen Liu,Shuilong He,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109272-109272 被引量:25
标识
DOI:10.1016/j.knosys.2022.109272
摘要

Intelligent fault diagnosis methods are significant to mitigate the dependency on expert knowledge and the cost. For the limited faulty data and variational working conditions of real scenarios, cross-domain diagnosis using existing diagnosis models is widely discussed. Especially, methods based on cross-domain transfer learning show great potentiality. However, the class imbalanced data of actual working conditions make it difficult to learn the actual fault feature distribution. To this end, a transfer residual network augmented with explicit weight self-assignment strategy based on meta data(TRN-EWM) is proposed. Specifically, we use a domain-shared ResNet to extract depth features of the data, which effectively avoid gradient disappearance and improve classification performance. Then, to lessen diagnosis difficulties in cross-domain and fully mine the actual feature distribution of the samples, a class imbalanced cross-domain transfer method is carried out. Ultimately, we creatively construct an explicit weight self-assignment strategy based on meta data for sample weight rebalancing, which prevents the dominance of major classes and the overfitting of minor classes. Two transfer experiments are conducted, and average cross-domain diagnosis accuracy of 99.60% is achieved by the proposed method, which shows the effectiveness in bearing fault diagnosis. • A novel cross-domain transfer fault diagnosis method for class imbalanced samples is proposed. • Fault feature extractor based on deep residual network is constructed to avoid gradient disappearance and improve the diagnosis performance. • Cross-domain transfer is carried out to reduce the degree of difficulty in diagnosis. • Explicit weight self-assignment strategy based on meta data is adopted to optimize the sample weighting process with class imbalance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
静然完成签到,获得积分10
刚刚
大模型应助双木夕采纳,获得10
刚刚
1111完成签到,获得积分20
2秒前
2秒前
4秒前
4秒前
5秒前
6秒前
脑洞疼应助wlq采纳,获得10
7秒前
7秒前
小蘑菇应助左友铭采纳,获得10
7秒前
SCINEXUS应助Niuma采纳,获得30
7秒前
简单又槐发布了新的文献求助10
8秒前
wanci应助静然采纳,获得10
8秒前
帅气冰珍发布了新的文献求助10
8秒前
8秒前
9秒前
大明关注了科研通微信公众号
11秒前
12秒前
桐桐应助帅气冰珍采纳,获得10
12秒前
lkjks发布了新的文献求助10
12秒前
bairunhua完成签到,获得积分10
13秒前
英姑应助邹幻雪采纳,获得10
13秒前
he完成签到,获得积分10
13秒前
1111发布了新的文献求助10
13秒前
wodel发布了新的文献求助10
14秒前
李振华完成签到,获得积分10
14秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
李振华发布了新的文献求助10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
17秒前
无花果应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得30
17秒前
17秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084504
求助须知:如何正确求助?哪些是违规求助? 2737517
关于积分的说明 7545573
捐赠科研通 2387170
什么是DOI,文献DOI怎么找? 1265830
科研通“疑难数据库(出版商)”最低求助积分说明 613169
版权声明 598336