亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-domain intelligent bearing fault diagnosis under class imbalanced samples via transfer residual network augmented with explicit weight self-assignment strategy based on meta data

计算机科学 残余物 班级(哲学) 传输(计算) 领域(数学分析) 人工智能 断层(地质) 数据挖掘 模式识别(心理学) 机器学习 算法 并行计算 数学 地质学 数学分析 地震学
作者
Xuan Liu,Jinglong Chen,Kaiyu Zhang,Shen Liu,Shuilong He,Zitong Zhou
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:251: 109272-109272 被引量:25
标识
DOI:10.1016/j.knosys.2022.109272
摘要

Intelligent fault diagnosis methods are significant to mitigate the dependency on expert knowledge and the cost. For the limited faulty data and variational working conditions of real scenarios, cross-domain diagnosis using existing diagnosis models is widely discussed. Especially, methods based on cross-domain transfer learning show great potentiality. However, the class imbalanced data of actual working conditions make it difficult to learn the actual fault feature distribution. To this end, a transfer residual network augmented with explicit weight self-assignment strategy based on meta data(TRN-EWM) is proposed. Specifically, we use a domain-shared ResNet to extract depth features of the data, which effectively avoid gradient disappearance and improve classification performance. Then, to lessen diagnosis difficulties in cross-domain and fully mine the actual feature distribution of the samples, a class imbalanced cross-domain transfer method is carried out. Ultimately, we creatively construct an explicit weight self-assignment strategy based on meta data for sample weight rebalancing, which prevents the dominance of major classes and the overfitting of minor classes. Two transfer experiments are conducted, and average cross-domain diagnosis accuracy of 99.60% is achieved by the proposed method, which shows the effectiveness in bearing fault diagnosis. • A novel cross-domain transfer fault diagnosis method for class imbalanced samples is proposed. • Fault feature extractor based on deep residual network is constructed to avoid gradient disappearance and improve the diagnosis performance. • Cross-domain transfer is carried out to reduce the degree of difficulty in diagnosis. • Explicit weight self-assignment strategy based on meta data is adopted to optimize the sample weighting process with class imbalance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
19秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
37秒前
小宏完成签到,获得积分10
44秒前
冲趴蛋蛋仔完成签到,获得积分10
48秒前
yx_cheng应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得20
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
2分钟前
跳跃毒娘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
wuxifan完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
stupidZ发布了新的文献求助10
5分钟前
共享精神应助科研通管家采纳,获得10
6分钟前
Tiger完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
所所应助都可以采纳,获得10
6分钟前
杪夏二八完成签到 ,获得积分10
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
yang发布了新的文献求助50
7分钟前
Zephyr发布了新的文献求助30
8分钟前
顾矜应助如沐春风采纳,获得10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
打打应助wbs13521采纳,获得10
10分钟前
stupidZ完成签到,获得积分10
10分钟前
10分钟前
岁和景明完成签到 ,获得积分10
10分钟前
国色不染尘完成签到,获得积分10
11分钟前
慕容雅柏完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008310
求助须知:如何正确求助?哪些是违规求助? 3548041
关于积分的说明 11298654
捐赠科研通 3282878
什么是DOI,文献DOI怎么找? 1810249
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188