亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinical significance and molecular annotation of cellular morphometric subtypes in lower-grade gliomas discovered by machine learning

注释 临床意义 医学 生物 病理 计算生物学 生物信息学
作者
Xiaoping Li,Xiaoqing Jin,Saman Ahmadian,Xu Yang,Sufang Tian,Yuxiang Cai,Kuldeep Chawla,Antoine M. Snijders,Yankai Xia,P. J. van Diest,William A. Weiss,Jian‐Hua Mao,Zhiqiang Li,Hannes Vogel,Hang Chang
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:25 (1): 68-81 被引量:21
标识
DOI:10.1093/neuonc/noac154
摘要

Lower-grade gliomas (LGG) are heterogeneous diseases by clinical, histological, and molecular criteria. We aimed to personalize the diagnosis and therapy of LGG patients by developing and validating robust cellular morphometric subtypes (CMS) and to uncover the molecular signatures underlying these subtypes.Cellular morphometric biomarkers (CMBs) were identified with artificial intelligence technique from TCGA-LGG cohort. Consensus clustering was used to define CMS. Survival analysis was performed to assess the clinical impact of CMBs and CMS. A nomogram was constructed to predict 3- and 5-year overall survival (OS) of LGG patients. Tumor mutational burden (TMB) and immune cell infiltration between subtypes were analyzed using the Mann-Whitney U test. The double-blinded validation for important immunotherapy-related biomarkers was executed using immunohistochemistry (IHC).We developed a machine learning (ML) pipeline to extract CMBs from whole-slide images of tissue histology; identifying and externally validating robust CMS of LGGs in multicenter cohorts. The subtypes had independent predicted OS across all three independent cohorts. In the TCGA-LGG cohort, patients within the poor-prognosis subtype responded poorly to primary and follow-up therapies. LGGs within the poor-prognosis subtype were characterized by high mutational burden, high frequencies of copy number alterations, and high levels of tumor-infiltrating lymphocytes and immune checkpoint genes. Higher levels of PD-1/PD-L1/CTLA-4 were confirmed by IHC staining. In addition, the subtypes learned from LGG demonstrate translational impact on glioblastoma (GBM).We developed and validated a framework (CMS-ML) for CMS discovery in LGG associated with specific molecular alterations, immune microenvironment, prognosis, and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁真先生完成签到 ,获得积分10
2秒前
Yyy发布了新的文献求助10
3秒前
8秒前
快乐滑板发布了新的文献求助10
11秒前
SCI完成签到,获得积分10
17秒前
浮生如梦完成签到,获得积分10
18秒前
共享精神应助快乐滑板采纳,获得10
23秒前
26秒前
周星星同学完成签到 ,获得积分10
28秒前
活力的忆安完成签到,获得积分10
32秒前
33秒前
Orange应助ahachaoyang采纳,获得10
33秒前
思源应助小66采纳,获得10
36秒前
ding应助一屋鱼采纳,获得10
36秒前
九月发布了新的文献求助10
39秒前
不会写诗完成签到 ,获得积分10
40秒前
森淼发布了新的文献求助10
42秒前
汉堡包应助九月采纳,获得10
48秒前
月5114完成签到 ,获得积分10
49秒前
暴躁的寻云完成签到 ,获得积分10
49秒前
尘尘完成签到,获得积分10
53秒前
Gilbert完成签到,获得积分20
57秒前
丘比特应助过噻采纳,获得10
57秒前
了凡完成签到 ,获得积分10
58秒前
嘻嘻嘻嗨学习完成签到,获得积分10
59秒前
老马哥完成签到,获得积分0
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小66发布了新的文献求助10
1分钟前
czb完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
Gilbert发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133889
求助须知:如何正确求助?哪些是违规求助? 2784804
关于积分的说明 7768555
捐赠科研通 2440160
什么是DOI,文献DOI怎么找? 1297188
科研通“疑难数据库(出版商)”最低求助积分说明 624901
版权声明 600791