阿霉素
ATP结合盒运输机
药理学
流出
多重耐药
细胞毒性
化学
药物输送
运输机
化疗
体外
医学
生物化学
抗生素
外科
有机化学
基因
作者
Hongyan Zhang,Jiandong Yu,Lisha Ma,Yue Zhao,Shujun Xu,Jingbin Shi,Ke Qian,Mancang Gu,Hongsheng Tan,Li Xu,Yun Liu,Chaofeng Mu,Yang Xiong
标识
DOI:10.1016/j.ijpharm.2022.121931
摘要
Multi-drug resistance (MDR) in breast cancer poses a great threat to chemotherapy. The expression and function of the ATP binding cassette (ABC) transporter are the major cause of MDR. Herein, a linear polyethylene glycol (PEI) conjugated with dicyandiamide, which called polymeric metformin (PolyMet), was successfully synthesized as a simple and biocompatible polymer of metformin. PolyMet showed the potential to reverse MDR by inhibiting the efflux of the substrate of ATP-binding cassette (ABC) transporter from DOX resistant MCF-7 cells (MCF-7/DOX). To test its MDR reversing effect, PolyMet was combined with DOX to treat mice carrying MCF-7/DOX xenografts. In order to decrease the toxicities of DOX and delivery PolyMet and DOX to tumor at the same time, PolyMet was complexed with poly-γ-glutamic acid-doxorubicin (PGA-DOX) electrostatically at the optimal ratio of 2:3, which were further coated with lipid membrane to form lipid/PolyMet-(PGA-DOX) nanoparticles (LPPD). The particle size of LPPD was 165.8 nm, and the zeta potential was +36.5 mV. LPPD exhibited favorable cytotoxicity and cellular uptake in MCF-7/DOX. Meanwhile, the bioluminescence imaging and immunohistochemical analysis indicated that LPPD effectively conquered DOX-associated MDR by blocking ABC transporters (ABCB1 and ABCC1) via PolyMet. Remarkably, LPPD significantly inhibited the tumor growth and lowered the systemic toxicity in a murine MCF-7/DOX tumor model. This is the first time to reveal that PolyMet can enhance the anti-tumor efficacy of DOX by dampening ABC transporters and activating the AMPK/mTOR pathway, which is a promising strategy for drug-resistant breast cancer therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI