Geometric Modeling and Surface-Quality Inspection of Prefabricated Concrete Components Using Sliced Point Clouds

点云 过程(计算) 组分(热力学) 计算机科学 点(几何) 云计算 工程类 工程制图 数据库 人工智能 几何学 数学 热力学 操作系统 物理
作者
Zhao Xu,Yangze Liang,Yusheng Xu,Zhuozhen Fang,Uwe Stilla
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:148 (9) 被引量:16
标识
DOI:10.1061/(asce)co.1943-7862.0002345
摘要

Prefabricated buildings, as the development center of architectural industrialization, will produce a lot of point-cloud data in the process of information detection and management. These point-cloud data can be used for reverse modeling to restore the physical characteristics of prefabricated concrete components, which can provide a basis for prefabricated building informatics. However, traditional point-cloud data processing methods have limitations in the high-precision and high-efficiency restoration of physical entities. To solve this problem, this study assumes the reconstruction of the prefabricated point-cloud geometric model as the research object and builds a prefabricated concrete component model in industry foundation class (IFC) format using the equal-interval segmentation slice mapping method. The geometric surface quality of the prefabricated concrete component was determined by comparing the as-built and as-designed models. This study automated the steps in the data processing process through code and established the framework of a three-dimensional (3D) as-built model reconstruction platform on the assembly construction site. The feasibility of this method was verified using the prefabricated concrete component point-cloud data collected on site. This study solves the problems of easy loss of local details, noise point interference, and manual processing in the quality inspection process of prefabricated buildings. It is conducive to the construction quality management process of prefabricated buildings. The experimental results showed that this method is efficient, the code running time is less than 0.12 s, and the accuracy satisfies standard requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Ning应助orange9采纳,获得10
5秒前
共享精神应助某某采纳,获得10
6秒前
杪123完成签到,获得积分20
7秒前
9秒前
司瑛士应助研友_LJeoa8采纳,获得10
9秒前
轨迹发布了新的文献求助10
10秒前
Tassbaby发布了新的文献求助10
10秒前
11秒前
DianaRang发布了新的文献求助30
14秒前
霸气靖雁发布了新的文献求助10
15秒前
延边棒子发布了新的文献求助10
15秒前
15秒前
伯分之伯发布了新的文献求助10
16秒前
19秒前
20秒前
yi发布了新的文献求助10
21秒前
漫漫完成签到 ,获得积分10
21秒前
吴彦祖完成签到,获得积分10
22秒前
陈晶完成签到 ,获得积分10
22秒前
鸿鹄发布了新的文献求助10
24秒前
wys完成签到 ,获得积分10
24秒前
xx发布了新的文献求助10
25秒前
27秒前
28秒前
斯文败类应助xx采纳,获得10
29秒前
29秒前
顺利的曼寒完成签到 ,获得积分10
29秒前
今后应助延边棒子采纳,获得10
29秒前
PZW发布了新的文献求助20
30秒前
31秒前
32秒前
yuan完成签到,获得积分10
36秒前
延边棒子完成签到,获得积分10
37秒前
自信的忆文完成签到,获得积分10
37秒前
Owen应助标致的苑睐采纳,获得10
38秒前
Hello应助贼拉瘦的美神采纳,获得10
38秒前
星辰大海应助zty采纳,获得10
38秒前
39秒前
vision应助科研通管家采纳,获得10
39秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122926
求助须知:如何正确求助?哪些是违规求助? 2773264
关于积分的说明 7717277
捐赠科研通 2428810
什么是DOI,文献DOI怎么找? 1290047
科研通“疑难数据库(出版商)”最低求助积分说明 621693
版权声明 600203