Geometric Modeling and Surface-Quality Inspection of Prefabricated Concrete Components Using Sliced Point Clouds

点云 过程(计算) 组分(热力学) 计算机科学 点(几何) 云计算 工程类 工程制图 数据库 人工智能 几何学 数学 热力学 操作系统 物理
作者
Zhao Xu,Yangze Liang,Yusheng Xu,Zhuozhen Fang,Uwe Stilla
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:148 (9) 被引量:16
标识
DOI:10.1061/(asce)co.1943-7862.0002345
摘要

Prefabricated buildings, as the development center of architectural industrialization, will produce a lot of point-cloud data in the process of information detection and management. These point-cloud data can be used for reverse modeling to restore the physical characteristics of prefabricated concrete components, which can provide a basis for prefabricated building informatics. However, traditional point-cloud data processing methods have limitations in the high-precision and high-efficiency restoration of physical entities. To solve this problem, this study assumes the reconstruction of the prefabricated point-cloud geometric model as the research object and builds a prefabricated concrete component model in industry foundation class (IFC) format using the equal-interval segmentation slice mapping method. The geometric surface quality of the prefabricated concrete component was determined by comparing the as-built and as-designed models. This study automated the steps in the data processing process through code and established the framework of a three-dimensional (3D) as-built model reconstruction platform on the assembly construction site. The feasibility of this method was verified using the prefabricated concrete component point-cloud data collected on site. This study solves the problems of easy loss of local details, noise point interference, and manual processing in the quality inspection process of prefabricated buildings. It is conducive to the construction quality management process of prefabricated buildings. The experimental results showed that this method is efficient, the code running time is less than 0.12 s, and the accuracy satisfies standard requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GT发布了新的文献求助10
1秒前
2秒前
jdjd发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
柏林寒冬应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
新青年应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
无花果应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
李爱国应助小小酥被卷了采纳,获得10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425