Geometric Modeling and Surface-Quality Inspection of Prefabricated Concrete Components Using Sliced Point Clouds

点云 过程(计算) 组分(热力学) 计算机科学 点(几何) 云计算 工程类 工程制图 数据库 人工智能 几何学 数学 热力学 操作系统 物理
作者
Zhao Xu,Yangze Liang,Yusheng Xu,Zhuozhen Fang,Uwe Stilla
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:148 (9) 被引量:30
标识
DOI:10.1061/(asce)co.1943-7862.0002345
摘要

Prefabricated buildings, as the development center of architectural industrialization, will produce a lot of point-cloud data in the process of information detection and management. These point-cloud data can be used for reverse modeling to restore the physical characteristics of prefabricated concrete components, which can provide a basis for prefabricated building informatics. However, traditional point-cloud data processing methods have limitations in the high-precision and high-efficiency restoration of physical entities. To solve this problem, this study assumes the reconstruction of the prefabricated point-cloud geometric model as the research object and builds a prefabricated concrete component model in industry foundation class (IFC) format using the equal-interval segmentation slice mapping method. The geometric surface quality of the prefabricated concrete component was determined by comparing the as-built and as-designed models. This study automated the steps in the data processing process through code and established the framework of a three-dimensional (3D) as-built model reconstruction platform on the assembly construction site. The feasibility of this method was verified using the prefabricated concrete component point-cloud data collected on site. This study solves the problems of easy loss of local details, noise point interference, and manual processing in the quality inspection process of prefabricated buildings. It is conducive to the construction quality management process of prefabricated buildings. The experimental results showed that this method is efficient, the code running time is less than 0.12 s, and the accuracy satisfies standard requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RXL发布了新的文献求助10
1秒前
1秒前
自由的梦露完成签到,获得积分10
1秒前
科研通AI6应助阿发采纳,获得10
2秒前
康康发布了新的文献求助10
3秒前
3秒前
爆米花应助甜美冥茗采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
5秒前
Jared应助科研通管家采纳,获得10
5秒前
dew应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
852应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
Weiyu完成签到 ,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
qingmoheng应助科研通管家采纳,获得10
6秒前
6秒前
affff发布了新的文献求助10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
桐桐应助三人行采纳,获得10
6秒前
dew应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557130
求助须知:如何正确求助?哪些是违规求助? 4642373
关于积分的说明 14667804
捐赠科研通 4583746
什么是DOI,文献DOI怎么找? 2514404
邀请新用户注册赠送积分活动 1488787
关于科研通互助平台的介绍 1459387