Monitoring fish using imaging sonar: Capacity, challenges and future perspective

声纳 遥感 侧扫声纳 海洋生态系统 鱼类资源 鉴定(生物学) 环境科学 计算机科学 过度捕捞 渔业 生态系统 地理 人工智能 生态学 生物
作者
Yaoguang Wei,Yunhong Duan,Dong An
出处
期刊:Fish and Fisheries [Wiley]
卷期号:23 (6): 1347-1370 被引量:54
标识
DOI:10.1111/faf.12693
摘要

Abstract The demand for fish products, which provide crucial protein for humans, is rising as the global population grows. In contrast, fish stock is declining due to human activity, environmental changes and overfishing. Fish monitoring provides valuable support data for effective fishery management and ecosystem conservation. The common monitoring methods are based on manual sampling, which is time‐consuming, laborious and intrusive. Imaging sonar is a hydroacoustic system that produces acoustic images similar to optical images by transmitting and receiving sound waves, allowing for in situ monitoring of fish non‐intrusively in the dark and turbid water environments where optical cameras are limited. In the last decade, imaging sonar, especially high frequency multibeam forward‐looking sonar and side‐scan sonar, has been widely used in fish monitoring. We reviewed the literature from the previous decade on the use of these two types of imaging sonar in fish species identification, abundance estimation, length measurement and behaviour analysis, as well as the sonar imagery processing concerning fish. The review results show that these imaging sonars are efficient and effective tools for fish monitoring in complex environments. The challenges include (1) the recognition of small fish forming dense aggregations; (2) species identification, which limits their use in species‐specific studies; (3) time‐consuming massive data processing. Therefore, advanced algorithms for sonar imagery processing and integrations with other sampling technologies are needed for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Aixx完成签到 ,获得积分10
1秒前
科研通AI6.1应助xiaoniqiu2660采纳,获得10
2秒前
Jqq发布了新的文献求助10
2秒前
2秒前
3秒前
无限麦片发布了新的文献求助10
3秒前
3秒前
sesese关注了科研通微信公众号
3秒前
无忧的阳光完成签到,获得积分10
3秒前
关关过举报求助违规成功
4秒前
寻道图强举报求助违规成功
4秒前
寻道图强举报求助违规成功
4秒前
4秒前
4秒前
Sunny发布了新的文献求助10
5秒前
6秒前
思源应助seven采纳,获得10
6秒前
苏德晟发布了新的文献求助10
6秒前
JSzzZ发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
FrozNineTivus发布了新的文献求助10
7秒前
领导范儿应助XMUh采纳,获得10
8秒前
8秒前
wanci应助糖宝采纳,获得10
8秒前
归尘发布了新的文献求助10
9秒前
板栗驳回了YChen应助
9秒前
自然的芷蝶应助youy采纳,获得20
9秒前
9秒前
9秒前
10秒前
10秒前
洛城完成签到,获得积分10
10秒前
10秒前
Jay发布了新的文献求助10
10秒前
11秒前
11秒前
科研通AI6.1应助微光采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933