Monitoring fish using imaging sonar: Capacity, challenges and future perspective

声纳 遥感 侧扫声纳 海洋生态系统 鱼类资源 鉴定(生物学) 环境科学 计算机科学 过度捕捞 渔业 生态系统 地理 人工智能 生态学 生物
作者
Yaoguang Wei,Yunhong Duan,Dong An
出处
期刊:Fish and Fisheries [Wiley]
卷期号:23 (6): 1347-1370 被引量:54
标识
DOI:10.1111/faf.12693
摘要

Abstract The demand for fish products, which provide crucial protein for humans, is rising as the global population grows. In contrast, fish stock is declining due to human activity, environmental changes and overfishing. Fish monitoring provides valuable support data for effective fishery management and ecosystem conservation. The common monitoring methods are based on manual sampling, which is time‐consuming, laborious and intrusive. Imaging sonar is a hydroacoustic system that produces acoustic images similar to optical images by transmitting and receiving sound waves, allowing for in situ monitoring of fish non‐intrusively in the dark and turbid water environments where optical cameras are limited. In the last decade, imaging sonar, especially high frequency multibeam forward‐looking sonar and side‐scan sonar, has been widely used in fish monitoring. We reviewed the literature from the previous decade on the use of these two types of imaging sonar in fish species identification, abundance estimation, length measurement and behaviour analysis, as well as the sonar imagery processing concerning fish. The review results show that these imaging sonars are efficient and effective tools for fish monitoring in complex environments. The challenges include (1) the recognition of small fish forming dense aggregations; (2) species identification, which limits their use in species‐specific studies; (3) time‐consuming massive data processing. Therefore, advanced algorithms for sonar imagery processing and integrations with other sampling technologies are needed for future development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研锅盖发布了新的文献求助10
刚刚
梨花诗发布了新的文献求助10
1秒前
BenjaminBrain发布了新的文献求助10
1秒前
yaosan完成签到,获得积分10
3秒前
NexusExplorer应助xinyue采纳,获得10
3秒前
乐乐应助milkdrink采纳,获得30
3秒前
研友_VZG7GZ应助yuyuan采纳,获得10
4秒前
5秒前
王鹿完成签到,获得积分10
5秒前
华仔应助刘小天采纳,获得10
5秒前
Next三金发布了新的文献求助10
6秒前
合适不悔发布了新的文献求助10
7秒前
7秒前
7秒前
爆米花应助123456采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
daggeraxe完成签到 ,获得积分10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
情怀应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
汉堡包应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
12秒前
恋如雪止应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770469
求助须知:如何正确求助?哪些是违规求助? 5585240
关于积分的说明 15424252
捐赠科研通 4904062
什么是DOI,文献DOI怎么找? 2638468
邀请新用户注册赠送积分活动 1586331
关于科研通互助平台的介绍 1541406