脱羧
化学
吸附
表面等离子共振
光化学
催化作用
联吡啶
纳米颗粒
羧酸盐
钌
无机化学
物理化学
立体化学
结晶学
有机化学
纳米技术
材料科学
晶体结构
作者
Markéta Kokošková,Ivana Šloufová,Veronika Gajdošová,Blanka Vlčková
摘要
Plasmon-catalyzed decarboxylation reactions of Ru(II) bis(2,2'-bipyridine)(4,4'-dicarboxy-bipyridine) denoted as Ru(bpy)2(dcbpy) and Ru(II) tris(4,4'-dicarboxy-bipyridine) denoted as Ru(dcbpy)3 complexes in hydrosol systems with Ag nanoparticles (NPs) conditioned by the presence of Ag(0) adsorption sites on Ag NP surfaces have been revealed by surface-enhanced (resonance) Raman scattering (SERRS and/or SERS) spectral probing and monitoring further supported by factor analysis. Interpretation of the experimental results was based on an identification of specific marker bands of the Ru-dcbpy and of the Ru-bpy units. Furthermore, by a series of specifically targeted SERRS and/or SERS experiments complemented by UV/vis spectral measurements and TEM imaging of deposited Ag NPs, plasmon catalysis by charge carriers, namely hot electrons (e-) and hot holes (h+), has been established as the most probable mechanism of decarboxylation reactions undergone by the carboxylate-chemisorbed Ru-dcbpy units of the complexes. The presence of Ag(0) adsorption sites on Ag NP surfaces as the necessary condition of the reaction progress is in full accord with the charge carrier mechanism of plasmon catalysis. In particular, the neutral Ag(0) sites create the interface required for the transport of hot e- to H+ co-reactants complementing thus the C-C bond breaking and CO2 formation caused by hot h+.
科研通智能强力驱动
Strongly Powered by AbleSci AI