Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics

弹道 熵(时间箭头) 推论 计算机科学 公制(单位) 算法 数学 人工智能 物理 运营管理 量子力学 天文 经济
作者
Yanglan Gan,Cheng Guo,Wenjing Guo,Guangwei Xu,Guobing Zou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:6
标识
DOI:10.1093/bib/bbac225
摘要

Abstract The development of single-cell RNA-seq (scRNA-seq) technology allows researchers to characterize the cell types, states and transitions during dynamic biological processes at single-cell resolution. One of the critical tasks is to infer pseudo-time trajectory. However, the existence of transition cells in the intermediate state of complex biological processes poses a challenge for the trajectory inference. Here, we propose a new single-cell trajectory inference method based on transition entropy, named scTite, to identify transitional states and reconstruct cell trajectory from scRNA-seq data. Taking into account the continuity of cellular processes, we introduce a new metric called transition entropy to measure the uncertainty of a cell belonging to different cell clusters, and then identify cell states and transition cells. Specifically, we adopt different strategies to infer the trajectory for the identified cell states and transition cells, and combine them to obtain a detailed cell trajectory. For the identified cell clusters, we utilize the Wasserstein distance based on the probability distribution to calculate distance between clusters, and construct the minimum spanning tree. Meanwhile, we adopt the signaling entropy and partial correlation coefficient to determine transition paths, which contain a group of transition cells with the largest similarity. Then the transitional paths and the MST are combined to infer a refined cell trajectory. We apply scTite to four real scRNA-seq datasets and an integrated dataset, and conduct extensive performance comparison with nine existing trajectory inference methods. The experimental results demonstrate that the proposed method can reconstruct the cell trajectory more accurately than the compared algorithms. The scTite software package is available at https://github.com/dblab2022/scTite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUN完成签到,获得积分10
1秒前
xx完成签到,获得积分10
2秒前
HEANZ发布了新的文献求助10
2秒前
栀子_茉莉发布了新的文献求助10
2秒前
穿多点发布了新的文献求助10
2秒前
LYQ发布了新的文献求助10
2秒前
聪慧海豚发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
晏紫苏发布了新的文献求助30
4秒前
奥拉同学发布了新的文献求助10
4秒前
4秒前
6秒前
6秒前
7秒前
7秒前
icefrog发布了新的文献求助10
7秒前
研友_VZG7GZ应助张英俊采纳,获得10
8秒前
8秒前
9秒前
9秒前
江汉小龙完成签到,获得积分10
9秒前
忧伤的烨伟完成签到,获得积分10
9秒前
天真的半莲完成签到,获得积分10
9秒前
李沐唅发布了新的文献求助10
9秒前
涤生发布了新的文献求助10
10秒前
奥拉同学完成签到,获得积分10
10秒前
10秒前
咸鱼鱼鱼完成签到,获得积分10
11秒前
大模型应助小小鱼采纳,获得10
12秒前
77777完成签到,获得积分10
12秒前
anyujie发布了新的文献求助10
13秒前
热心凡雁完成签到,获得积分10
13秒前
佳丽发布了新的文献求助10
14秒前
晨曦完成签到,获得积分10
14秒前
14秒前
14秒前
咸鱼鱼鱼发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847